
UNIT SYLLABUS 
UNIT 1 

Introduction to Software Engineering: Definition – Size Factor – Quality and Productivity of 

Factors – Managerial Issues – Planning a software project: Defining the problem – Developing 

the problem – Developing a solution Strategy – Planning the Development Process – planning an 

Organization structure – Other Planning Activities. 

 

UNIT 2  

Software Cost Estimation: Software cost factors – Software Cost Estimation Staffing level 

Estimation – Estimating Software Maintenance Costs – The Software Specification – Formal 

Specification Techniques  

 

UNIT 3  

Software design: Fundamentals Design Concepts – Modules and Modularization cost Design 

Notations – Design Techniques – Detailed Design Considerations –Real-Time and Distributors -

System Design – Test Plans – Milestones,walkthrough, and Inspections. 

 

UNIT 4  

Implementation issues: Structured Coding Techniques – Coding Style – Standards and 

Guidelines – Documentation guidelines – Type checking – Scoping Rules –Concurrency 

Mechanisms. 

 

UNIT 5  

Quality Assurance – Walkthroughs and Inspection – Static Analysis – Symbolic Executions Unit 

Testing and Debugging – System Testing – Formal Verification: 

 

  

TEXT BOOK  

                        
      SOFTWARE ENGINEERING CONCEPTS                                                                                                                     

 
                                           -Richard Fairley  

               
 
 
 
 
 
 
 

  



                                              UNIT-1 
INTRODUCTION:  
                
Software product has multiple users, multiple developers and maintainers. 

To Develop a software product 

                  1.user needs and constraints must be explicitly stated. 

                  2.Source code must be implemented and tested. 

                  3.Supporting documents must be prepared.(Principles of operation,users 

manual,installation instruction,training aids,maintenance documents) 

 

Software maintenance task 

                 1.Analysis of change request. 

                 2.Redesign 

                 3.Modification of the source code. 

                 4.Thorough testing of the modified code. 

                 5.updating documents and documentation. 

                 6.Distribution of the modified work to the user. 

 

Software Engineering is based on the foundation of 

                 1.Computer Science 

                2.Management Science 

                3.Economics 

                4.Communication Skill 

                5.Engineering approach to problem solving 

 

Software Engineerig requires 

                   

 Technical skill 

 Managerial control  

 Management science provides foundation for software project management. 

 Computing System should be developed and maintained on time and within cost  

estimate. 

 Economics provides resource estimation and cost control. 

 High Degree o fcommunication is required among customers,managers,hardware  

 Engineers,software Engineers and other technologist. 

 Engineerig problem solving techniques provides basis for  

                      

                     1.Project planning  

                     2.Project management 

                     3.Systamatic Analysis 

                     4.Design 

                    5.Extensive Validation 

                    6.Ongoing maintenance activities. 

           

           Fundamental Priniciple of Software Engineering is to design software  products 

that minimize the intellectual distance between the problem and the solution. 



 

 

 

Modules in Software Engineering  

   

 Units of decomposition 

 Software  modules have both control interface and data interface. 

 Relationship among modules is called control interface. 

 Parameters passed between the modules is called data interface.  

 

Advances in Software Engineering : 

      

                    1.Analysis technique-Determining the software requirements. 

                    2.Metodological approaches- Software Designing. 

                    3.Implementation techniques-Source code. 

                    4.Software validation techniques-Examine and Quality assurance 

                    5.Formal techniques-Verify 

  

Some Definition:  
 Software Engineering differs from Computer programming 

 In Software Engineer Engineering like techniques are used to  

specify, 

 Design,implement,validate,maintain software products within the  

time and budget.                                                                       

 On small project(1 or 2 programmers,duration is 1 or 2 months)  

primarily technical. 

 On projects involving more programmers and longer durations,  

                               mana 

gement control is required to coordinate the technical                                                                                              

 activities.  

Terms: 
 Programmer:  
              Denote an individual who is concerned with details of implementing, 

packaging and modifying algorithms,data structures,returning programming languages. 

  

Software Engineers: 
                 Concern with the issues of   

1. Analysis  

2. Design  

3. Verification &Testing 

4. Documentations 

5. Software maintenance  

      6.   Project Mangement 

Computer Software:  
                  It includes the Source code and all the associated documents and 

documentation that constitute the software product. 



 

Components of Software products  

  Documentation: 
  

1. Requirements Documents 

2. Design specification 

3. Source code 

4. Test Plans 

5. Principles of  Operation 

6. Quality assurance procedure 

7. Software problem reports 

8. maintenance procedures 

9. Users manual 

10. Installation Instruction 

11. Training Aids.  

 Explains the characteristic of the documents. 

 Internal Documentation of source code  -  it describes the  

characteristics of the code. 

 External Documentation  --- it explains the characteristic of the  

documentation associated with code. 

 

Developer: 
 
 Developer or Software Engineer are used interchangeable. 

 

Customer: 
 
 An individual or organization. 

  

Software Reliability: 
 
 The ability of a program to perform a required function and their stated 

conditions for a stated period of  time. 

  

Some Size Factors: 
  

Total effort devoted to software: 
  

%  o f  c o s t 
1 5 0 

1 0 0 

5 0 

0 



H / w  S / W  c o s t  R a t i o 

 In 1960 the ratio was approximately 80% Hardware cost and 20% 

Software cost.In 1980 the ratio was reversed. 80 % for software cost and 20% for 

Hardware cost. 

  The reason is the transistors,Intetpreter circuits have resulted in 

dramatic decreases in Hardware cost. 

Distribution of Effort: 
  
 Life cycle of  Software    

1. Analyze & Design 

2. Implement 

3. Test 

4. Adapt 

5. Enhance 

6. Fix  

y e a r 

   The life span of software products is one to 3 years for development 5 

to 15 years for maintenance. 

 Software maintenance involves 3 activities. 

   1.Enhancing the capability of the product.  

    2.Adapting the products to new processing environments 

   3.Correcting bugs. 

Distribution of Maintenance: 
  

5 
1 0 
1 5 
2 0 
2 5 
3 0 
3 5 
4 0 

0 

A n a l y z e 

I m p l e m e n 
t 

   
1.Enhancement—60% 

2.Adaptation—20% 



3.Correction ---20%  

T e s t 
A d a p t 

E n h a n c e 

                        Distribution of effort for development phase  

        1.Analysis & Design—40% 

         2.Implementation,Debugging,unit testing –20% 

        3.Integration & Acceptance testing—40% 

 

                From observations, 

     Software maintenance activities consumed more resources than 

software development activities.    

 A large percentage of total effort is devoted  to software enhancement. 

  Testing requires half the effort during software development . 

 Activities of system testing,enhancement, adaptation consumed ¾ th of 

total life cycle effort 

  

PROJECT SIZE CATEGORIES: 
 Project size is a major factor that determines the level of management 

control and the types of tools and techniques required on a software project. 

 

 

  

F i x 

  

Trivial Project:  
               No.of programmers :1 

               Duration   :for a few days, few weeks 

               Product Size  :500 source line 

               Packaged in              :10 to 20 subroutines 

      These Programs are often personal software 

      Developed exclusively for the use of the programmer 

      Small amount of formal analysis,elaborate design documentation, extensive test 

planning or supporting documents are needed. 

 

Small Project: 
               No.of programmers : 1 

               Duration   : 1 to 6 months 

               Product Size            :  1000 to 2000 source lines 

               Packaged in 25 to 50 subroutines 

               Small Programs usually have no interactions with other programs. 

               Example, Scientific applications written by engineers to solve numerical 

problems. 

               Students Projects written in compiler and Operating System. 



               Small Project requires little interactions between programmers and customers. 

               Standardized techniques and notations, standardized documents and systematic 

project reviews should be used in small projects. 

 

Medium Size Projects:  
 

 No.of Programmers : 2 to 5 

 Duration      : 1 to 2 years 

 Product Size     : 10,000 to 15,000 source lines 

 Packaged in 250 to 1000 routines. 

  Examples 

    Medium size projects includes assesmblers,Compilers,Small 

management information system,inventory system and Process control applications. 

  To develop such programs, interaction among programmers and 

Customers is required. 

  A certain degree of formality is required in planning, documents and  

project reviews. 

 Most application programs,System programs are developed in 2 years or 

less by 5. 

 

Larger Size Projects:  
  

o No.of Programmers : 5 to 20 

o Duration      : 2 to 3years 

o Product Size     :50,000 to 1 lakhs source lines. 

o Packaged in several sub systems.  

o Large programs has significant interactions with other programs and sub 

systems.  

o Examples, Compilers,Small time sharing systems, database 

packages,graphic packages and real time control systems.   

o Communication among programmers,managers,customers are needed. 

o The larger projects requires more than 1 programming team. 

o Example, three teams of 5 persons each. 

o It involves more than 1 level of management. 

o Systamatic process standardized documents and formal reviews are  

essential. 

 

  

Very Large Projects: 
  
o No.of Programmers : 100 to 1000 

o Duration           : 4 to 5 years 

o Product Size          : 1 million source lines 

o It consists of several major subsystem each of which forms a large system. 

o The subsystem have complex,interactions with one another and with other  



separate we developed system. 

o Tele communication and multi tasking. 

o It includes large OS, large database system and military commandor and  

control system. 

 

  

Extremely large Projects: 
  
  

  

o No.of Programmers : 2000 to 5000 

o Duration           : 5 to 10 years 

o Product Size          : 1 million to 10 million  source lines 

o It consist of several very large subsystem. 

o It involves real time processing,tele communications,multi tasking and  

distributed processing. 

o Example,Air traffic control,military commandor control system.  

Quality and Productivity Factors:  
 Development and maintenance of software product are complex task. 

 There is a fundamental difference between writing a small programs for  

PC and developing or modifying a software product. 

 Software Quality and programmer productivity can be improved by  

improving the process used to develop and maintain software products.  

 

Individual Ability:  

 Production and maintenance of software products are labour intensive 

activities.  

 Productivity and Quality are direct functions of individual ability and 

effort.  

 There are two aspects of ability  

  

 General competition of the individual 

 Familiarity of the individual with the particular application area.  

                            

 Lack of familiarity with the application area can research in low  

productivity and poor quality. 

 On very large and extremely large projects no of programmers so  

large. 

 The individual differences in programmer productivity will tend to   

average out. 

 Modules developed by weaker programmers may show poor  

quality and may lag in delivery time. 

 Small and medium  size projects (5-fewer programmers)are  

extremely sensitive to the ability of the individual programmer. 

 Individual ability is a primary factor in quality and productivity. 



  

Team communication:                               
   Programming has regarded as an individual and private activity. 

   Programmers are rarely preced as public documents and they rarely   

discuss the exact details of the work in a systematic manner. 

  So as a result ,the programmers may mis understand the role of their  

modules in an evolving system. 

 This mades mistake that may not be detected until some time  later. Many  

of the recent innovations in software Engineering such as design,reviews and code 

reading exercise have the goals of making software more visible and improving 

communications among programmers.  

 Increasing product size results in decreasing programmer productivity due 

to the increased complexity of interactions among program components.  

 Due to this increased communication is required among 

programmers,managers and customers.  

 

From Brooks observation: 
                     
                     No of communication path among programmers  =  n(n-1)/2 

Where,n=no of  programmers. 

  

  Increasing the number of team members from 3 to 4 to 5 increases the no of 

communication path from 3 to 6 to 10. 

 

Brooks law: 
          “Adding more programmers to  a late project may make it later”  

  

Product complexity: 
            
              There are 3 levels of product complexity. 

                              1. Application Programs 

         2. Utility Programs. 

         3.System level Programs. 

 

Application Program 
  
                   It includes scientific and data processing routines written in a high level 

language such as COBOL,FORTRAN,C,C++. 

 

 

Utility Program 
           
        It includes compilers,Assemblers,linkage Editors and loaders. 

They may be written in high level language or Assembly language. 

 

System Level Programs: 



                  
                    It includes data communication packages real time process control system, 

OS routines in any kanguages.(i.e)high level or assembly. 

  

  Application programs have the highest productivity and the system programs the 

lowest productivity.  

 Utility programs can be produced at a rate of 5-10 times of system programs. 

 Application programs at a rate of 25-100 times of system programs. 

 A product that is twice as large or twice as complex as a known product,by  

whatever measure other than effort may require 10 times or even 100 times the 

amount of effort required for the known product.  

 

Appropriate Notations: 
  

 In software engineer the representation schemes have fundamental  

importance, programming languages provides compact notations for  

the implementation phase of software development.  

 But there are no widely accepted notations for stating functional 

requirements ,design specifications,test plans are performance criteria.  

 There are no universely accepted notation in software Engineering. 

 Appropriate notations provide vehicles of communication among  

project personnel. 

 It introduces the possibility of using automated software tools to  

manipulate the notations and verify proper usage. 

 

Systamatic Approaches:   
 

Change Control:  

 In every field there are certain accepted procedures and techniques 

 A Single approach to software development and maintenance will not  

be adequate to cover all situations. 

 In the evaluation of software engineering it is not clear which of the  

various approaches to software development should be used in which 

situation.  

 The flexibility of software is a great strength and also a great source 

of difficulty in software engineering.  

 Requirements can also change due to poor understanding of the 

problem are external economic and political factors beyond the 

control of the customers or developers.  

 Notations and procedures provide the ability to trace and access the 

impact of proposed  changes are necessary to make visible the true 

cost of apparently small changes to source code.  

 Use of appropriate notations and techniques makes control change 

possible without degrading the quality of work products.  

 Planning for software project must include plans for change control. 



  

 Level of Technology: 
                        It include factors such as programming language. 

                   Machine Environment 

  The Programming Practices. 

 Software tools 

                        Modern Programming languages provide improved facilities for data 

definition and data usage. 

                        Improve Constructs for specifying control flow,better modularization 

facilities, user defined exception Handling and facilities for concurrent programming. 

                         The machine environment includes a set of hardware and software 

facilities for developing, using and  maintaining a software product. 

                          Modern programming practices include use of systematic Analysis and 

design techniques,notations,structure coding,systematic techniques for designing and 

documenting and testing. 

  

Level of Reliability: 
                        Every software product must possess basic level of reliability. 

                        Extreme reliability is gained only with great care in analysis,design,design 

implementation,system testing and maintenance of software product. 

                        Both human and machine resources are required to obtained increased 

reliability. 

  

Problem Understanding: 
 Failures to understand the true nature of the problem to be solved  

is a common and difficult issue.  

 

Available Time:  
 Often the customer does not truly understand nature of the 

problem.  

 Often the software engineering does not understand the application 

area and has trouble communicating with the customer because of 

differences in educational backgrounds view the points and 

technology.  

 Careful planning customer  interviews,task observations and 

prototyping, a preliminary version of the user’s manual and precise 

product specification can increase both customer and developer 

understanding of the problem to be solved.  

                         A software project requiring 6 programmer-months of effort can be 

completed by 1 programmer in 6 months or by 6 programmers in 1 month. 

                         Software projects  are sensitive not only to total effort but also to ellapse 

time and the no.of people involved. 

                         Utilising 6 programmers for 1 month will be less effective than using 1 

programmer for 6 months. 

                          This is because the learning curve for 6 programmers on an 1 month 

schedule will occupy a large  percentage of the elapsed time and because the effort 



required for co-ordination and communication among 6 programmers. 

                          Programmer Productivity is also sensitive to the calendar time available 

for project completion. 

                           Determining optimum staff in levels and proper elapsed times for 

various activities in software product development is an important and difficult aspects of 

cost and resource estimation. 

 

Required Skill:  

o Software Engineering requires a vast range of skills. 

o Good Communications 

o Knowledge of application area 

o Requirement definition and design 

o Problem solving skills 

o Implementation of software (i.e)Good programming knowledge,no syntax  

error 

o Debugging and test plans  

o Inter personnel communication skill. 

 

Facilities and Resources:  

 Work related factors such as  

 Good machine access and quiet place to work are more important. 

 Software project managers must be effective in dealing with the  

 

Adequacy of Training:  
factors that motivate the programmers to maintain high product 

quality,high programmer productivity and high job satisfaction.  

 Express oneself clearly in English 

 Develop and Validate software requirements and design specifications. 

 Work within application area 

 Perform software maintenance 

 Perform economic analysis. 

 Work with project management techniques  

 Work in groups  
Management Skills: 

o Many of the problems in software project management are unique. 

o Managers experienced in management of computer hardware projects find  

software project management to be difficult. 

o This is due to the differences in design methods,notations and  

development tools. 

o Many Organisations offer project management training to software  

engineers to prepare them for project management task. 

 

Appropriate Goals: 
                Primary Goal of software engineering is to development of software products 

for their intended use. 



                Every software product  must provide optimal level of  

 

 1. Generality 

  2.Reliability 

 3.Efficiency 

Raising Expectations: 
                   There are two interrelated aspects of raising expectations 

                              1.How much functionality,reliability and performance can be provided 

by a given amount of development effort. 

                              2.Issues of fundamental limitations of software technology. 

  

Managerial Issues: 
  
 Success of Software project involves 

      

    Technical Activities   

    Managerial Activities 

                        

 Managers Control 

 

 1.Resources 

 2.Environment  

 Important managers responsibility 

                    Software product delivered on time 

                     Software working according to customer’s wish 

                     Software within cost estimates  

Other managerial responsibility:  
Business Plans 

Recruiting customers 

Developing Marketing Strategies 

Recruiting and training employees  

 

Important Problems:  

 Planning is poor 

 Selection for project managers are poor (i.e) Procedures and  

Techniques 

 Description  of project is poor 

 Estimation of resources for software project is poor 

 Success criteria is inappropriate 

 Decisions rules are poor(for selecting the proper organizational  

structure,correct management techniques ) 

 Procedures ,methods and techniques are not readily available.  

 

Methods for solving these peoblems:  
                         



 Educate and Train 

                       Top management 

                        Project 

                        Software developers  

 

  

 Analyze the data from previous software project to find effective 

methods  

 Define objectives,quality 

 Establish success priority criteria 

 Develop accurate cost and schedult that are accepted by  

management and customer 

 Selection of project managers 

 Specific work assignments to software developers  

Planning a   software product:  
  

 Goals can be formulated using concise statement,constraints. 

 Goal apply to both development process and work product. 

 It can be either qualitative  or quantitative. 

 Every development process 

 Should  provide product on time. 

 Within cost estimates . 

 Opportunities for project personnel to  learn new skill.  

Requirements includes:  
 

 Functional requirements  

 

  

 Performance 

 Requirements   for hardware,software and firmware.  

Qualified requirements  
 

 Response to external interrupts shall we 25 second maximum 

 50KB of primary memory. 

 Full operation  95% of each 24 hour period.  

  

Quanlitative requirements  
 

 Accuracy 

 Efficient use of primary memory. 

 95% relaiable  

  

planning the development process:  
 



1. software life cycle activities 

2. define 

3. develop 

4. test 

5. deliver 

6. operate 

7. maintain.  

 

 lifecycle activities are given  above. These activities are change 

 no single life cycle models is used. 

 Different models are used for various software product. 

 A life cycle model that is understood and accepted  by all concerned   

  

parties improves  project communications and project manageability , 

resource allocations, cost control and product quality.  

The phased lifecycle model:  
 

 Series of successive activities. 

 Requires well defined input, process and results in well defined output. 

 Resources is required to complete each phase. 

 Application of explicit methods, tools and techniques.  

  

Analysis consist of two sub phases  
 Planning  

 Requirements definition.  

  

This phase includes  

 

 Understanding  the customer problem. 

 Performing a feasibility study. 

 Developing solution stragedy  

 Acceptance criteria  

 Planning the development process.  

  

The products of planning are  
 

 System definitions. 

 Project plan.  

  

System definitions:  
 

 Expressed in English or some other language.  

  

 It includes charts, figures, graphs, tables, and equations.  



Project plan:  
 

 Contains  lifecycle   model to be used. 

 Organitational  structure. 

 Basic development  schedule, resource estimate, staffing requirements, tools and  

techniques to be used. 

 Time and cost   are basically calculated because it is not possible to estimate  

exactly without doing basic design. 

  

 
 
 
 
 
Requirements definitions:  
 It includes basic functions of software components in hardware, software, and  

people subsystem. 

  

The product of requirements definition:  
  

 The product of requirements definition is a specification that describes 

 The processing environment 

 The required software functions. 

 Performance constraints  on the software. 

 Exception handling 

 Acceptance criteria.  

Design phase:  
  

 In the phased model, software design follows analysis 

 Design  phase identified software  components  

1. Functions. 

2. Data streams 

3. Data stores  

 It  specifies  relationship among components. 

 It specifies software structures. 

 Maintaines   a record of design decision. 

 Blueprint for the implementation phase. 

 Design phase consist of  

1. Architectural design 

2. Detailed   design 

  

Architectural design:  
             It involves identifying the software components dividing them into software 

modules and conceptual data structures, specifying interconnection among components. 



 

  

 Detailed   design  
  It is concerned with the details of “how to” 

 Package the processing modules. 

 Implement the processing, algorithm, data structures and  interconnection among  

modules. 

 

  

Implemention phase:  
It involves translation of design specification into source code and debugging, 

documentation  and unit testing of source code. 

  

 
Errors:  
  

Implementation phase may include errors in routines, functions, logical errors, 

and algorithm, errors in data structure layout. 

  

System testing:  
 

  

It involves 2 kinds of activities 

1. Integration testing  

2. Acceptance testing  

Integration testing:  
Developing a stratedy for intergrating the software  components into a function 

requires careful planning so that modules are available for integration when needed. 

  

Acceptance testing:  
 

  

 It involves planning an execution of various type of test that software system  

satisfied  requirements documents.  

 After getting the acceptance from the customer software system of released for 

production work and mainteance  phase.  

Mainteance  Phase:  
  

It Includes  

 the enchancement of capabilities. 

 Adaptation of software to new processing environment. 

 correction of software bugs.  

Milestones, documents and reviews:  
 

  



 Another view of the software lifecycle g softwareive importance to the 

milestones, documents and reviews.  

 Ask the software products evolves through the development phase it is difficult 

for themanager and team members to determine resources extended to predict 

schedule delays extra.  

 Establishing milestones, reviews points, documents and management sign offs 

can improve project visibility.  

 The development process becomes more public activity and tangible. 

 This result is improved 

 Product quality 

 Increased  programmer  productivity. 

 Better moralae among team members.  

 
A system definition and project plan: 
Product fesability review(PFR)  
 

  

 PFR is held to determine the feasibility to  project  continuation. 

 The outcome of review may be 

 Termination of the project. 

 Redirection of the proect. 

 Or continuation of the project as planned.  

A primilarly version of the user’s manual  is prepared:  
 It involves a vehicle  of communication between customer and developer.  

 

  

 It is prepared using information from the system definition and result of prototype 

studies and mock ups of user displays and reports.  

A  software requirements specification is prepared:  
  

 It defines each essential  requirements for software Product. 

 External interface to software ,hardware, firm ware, people subsystem. 

 Each requirements should be define show that it can be verified by a  methods  

such as 

 Inspection  

 Demonstration 

 Analysis or testing  

A primilarly version of the software verification of the plan is prepared  
 

  

 It states the methods to be used  

 Results to be obtained.  

A software requirements reviews(SRR)  
 



  

Is held to make sure  the adequacy of 

1. system definition  

2. project plan 

3. software requirements specification 

4. software verification plan 

5. preliminary user’s manual.  

Software design specification:   
 The design team creates this specification  in two stages 

1. Architectural design document is created. 

2. Following that the preliminary design review is held then the detailed design  

specification is generated. 

 

  

A preliminary design review(PDR)  
  

 Is held  to evaluate of adequacy of the architectural design insatisfying the 

SPS(software Product specification)  

 Another reviews may be required to resolve problems under format sign 

offs is required of the project manager.  

Critical design review:  
  

Is held 

 CDR is used determine the acceptablility of the software design specification. 

 A format sign offs is required.  

  

During the design phase , the software verification plan is expanned to 
include method:  
 

  

 To verify that the design is  complete  and consistent with respect to the 

requirements.  

 To verify that the source code is complete and consistent with respect to the 

requirements and design specification.  

A software verification  review  is held to evaluate the adequacy and 
completeness    of the verification plan:  
 To review the primilinary acceptance test plan(ATP) 

 ATP includes 

 Actual test cases  

 Expected result. 

 Capabilities to be demonstrated by each test. 

 The acceptance plan is initiated  during the design phase and completed during  

the implementation. 

  



During the implementation phased:  
 

  

 Source code is written. 

 Debug. 

 Unit tested. 

 Standard parcties in the following area 

 Logical structure 

 Coading style 

 Data layout  

 Comments 

 Debugging  

 Unit testing  

Source code reviews are held during implementation:  
 This is to ensure that all the code has been reviewed by atleast one person other 

than programmer.  

 

 Inspection are conducted during  product evaluation to verify the completeness,  

consistency and suitability of the work products. 

  

 

  

 The users manual  the installations and training plans and the software 

maintenance plans are completed during the implementation phase.  

 A final acceptance review is performed prior to product delivery’.  

 Software verification summary  is prepared. 

 It describes the results of all the reviews, audits,inspection and test throughout the  

development cycle. 

 

  

A project legancy is written:  
  

 The legancy summarises the project and provides a record of what went well and 

what went wrong during the  project.  

The cost model:  
  

 This model is used specify the cost of performing various activities in a Software 

project.  

 The cost of conducting a Software project is the sum of the cost involved in 

conducting each phase of the project.  

The cost involved eac phase include:  
 The cost of performing the process 

 Preparing the products of the phase. 

 Plus the cost of verifying the product of the present phase are complete and  



consistent with the previous phase. 

  

 Cost of producing system definition and project plan =performing planning 

functions and preparing documents+ cost of verifying the system definition and 

project  plan.  

 Cost of SRS= Cost of requirements definition and document + Cost of modifying 

system definition and project plan + Cost of verifying SRS is complete and 

consistence.  

 

 Cost of  design= Cost of preparing design  specification and test plan+ Cost of  

modifying and correcting the system definition, project, SRS(Software 

requirement specification)+cost of verifying design  

 

 Cost of product implementation= Cost of implementing documenting, debugging  

and unit tesing of source code+ Cost of users manual, verification plan,  

maintenance procedure, instalization and tranning instructions+ Cost of 

modifying and correcting system definition, project plan,SRS, design 

specification, verification plan+the Cost of verifying the implementation is 

complete and consistent.  

 

 Cost of system test= Cost of planning and conducting the test+ Cost of modifying  

and correcting the source code+ Cost of verifying the test. 

  

  

 Cost of maintenance Software= Cost of performing product enhancement 

+making adaptation to new processing requirements and fixing bugs.  

  

The prototype lifecycle model:  
 

  

 Importance to the sources of product request , go/no go decisions points and the 

use of the prototypes.  

 Prototype is a mock up or model of the Software product. 

 A prototype incorporates components of the actual model. 

 There are several reasons for developing a prototype.  

Important reason:  
 It illustrates input data formats, messages, reports and interactive dialogues for 

the customer.  

 To explore technical problems in the proposed system. 

 In situations where phased model of analysis, design, implementation is not  

appropriate. 

 

 

  

Successive version: 



 Product development by the mothod of successive versions is an   extension of  

  

 

  

prototyping. 

 In which an initial products skeleton is refined in to increasing the level of  

capabilities 

 It illustrates the analysis phase followed by interactive design, implementation  

and assessment  of successive version. 

 The dashed line indicates that the assessment of version I may indicate the need  

for the further analysis before designing version I+1. 

 Version I is the prototype version of the software product. 

 Versions one through N of the product or designed prior to any implementation  

activities. 

 The dashed line indicates that implementation of the Ith version may reveal the  

need  for further analysis snd design before proceeding with implementation of 

version I+1  

Planning an organizational structure:  
 Contains various task  

 The task include  

1. Planning 

2. Product development 

3. Services 

4. Publications 

5. Quality assurance 

6. Support and maintenance  

 

  

Planning task identifiers:  
 

  

 External cutomers 

 Internal product needes 

 Conducts feasibility study.  

Development  Task Identifiers:  
 

  

 design  

 implements 

 debuggs 

 
test and integrate the product  

service task provides:  
 

  



 automated tools and computer resources for all other task. 

 Performs configuration. 

 Product distribution  

Publication task develops:  
 

  

 Users manual 

 Instalization instruction 

 Principles of operation 

 Supporting documents  

 
 
Quality  assurance task provides:  
  

  

 Independent evaluvation of  source code. 

 Publications prior to releasing them to customer.  

Support task:  
 

  

 Promotes the product. 

 Trainers user. 

 Installs the product.  

Maintenance task provides:  
  

 Error connection   

 Enhancement  

  

Methods for organizing these task include:  
 

 

  

1. Project format 

2. Functional format 

3. Matrix format  

Project structures 
Project format  
 

 

  

 It involes assuming a team of programmers. 

 Project team members do 

1. Product definition 

2. Design the product 

3. Implement it 



4. Test it 

5. Conducts Project review 

6. Preparing  supporting document.  

Functional format:  
 

 

  

 In this approach a different team of  programmers perform each phase of the 

Project  

 The work products pass from team to team as they evolved 

 Functional format involves 3 teams  

1. An analysis team. 

2. A design team and implementation team. 

3. test formatting and maintenance team.  

Matrix format  
 In this format eac of the functions has its own management team.  

 This format involves a group of specialist personnel concerned only with 

that function.  

 Each development project has a project manager concerned only with that 

Project  

 The Project manager generates and reviews documents. 

 Each functional group participate in each Project 

 Ex: software development team members belongs to the development  

function similarly testing belong the testing function. 

 

  

Programming  team structure:  
 

 

  

 Every  programming team must have an internal structure. 

 Team structure depends on the nature of the Project  and the product 

 Basic team structure includes 

 Demacratic team 

 All team members participate in all decisions.  

The chief programmer team:  
  

 chief programmer is assited and supported by other team members. 

 Ex: doctors, surgeon  

Hierarchical team:  
 In combines the aspects of the democratic team and chief programmer team.  

 Each team  should be limited  to not more than  5 or 17 members  for effective  

coordination and communication. 

 



  

Democratic team  
 this teams was first described as egoless team. 

 Group leadership rotates from member to member based on the task to be  

performed and the differing abilities of the team members. 

 A Democratic team differs from an egoless team is that one team members is  

designsted as team leader and occupies the position of first among equals. 

 This is because a team fuctions best when one individual is responsible for  

coordinationg team activities and for making final decision. 

 

 

 

  

Advantages:  
 Opptunities for each team members to contribute to decision. 

 To learn from one another 

 Increased job satisfaction  

 Non threatening work environment. 

 

  

Disadvantages:  
 Weeknening of individual and authority. 

 

  

chief programmer teams:  
 this teams are highly structured. 

 the chief programmer   

 

 

 

 

  

 design the product. 

 Implement  critical  parts of the product 

 Makes all the major technical decision. 

 Work is allocated to the individual programmer by the chief programmers. 

 A program librarian  maintains program listing, design documents, test plans etc  

in a central location. 

 The chief programmer is assited by an administrative program manager.  

Advantages:  
  

 Centralized decision making. 

 Reduced communication paths.  

Hierarchical  team structure:  



 This structure occupies a middle position between the extremes of Democratic 

teams and chief programmer teams.  

 The Project needed assigns, task, attends, reviews,detects problem areas, balances 

the word load the participate in technical activities.  

 This structure limits the number of communication paths in the Project 

 

  

Disadvantages:  
 

 

  

 The most technical competetant programmer tend to be promoted in to 

management positions.  

 Promotion of  the best programmer have the two negative effects. 

 Losing a good programmer. 

 Creating a poor manager.  

Other planning activities:  
 Planning for configuration  management and quality assurance. 

 

  

Configuration management:  
 

  

 Modeof arrangement  

 Concerned witj controlling changes in the work products. 

 Accounting for the status of the work products 

 Mainteaning the program support library  

Quality assurance:  
 

  

 Develops and monitors the Project standars. 

 Performs audits. 

 Develop and perfoms acceptance test.  

During planning phase:  
 

  

 The two activities are specified. 

 Tools are identified an acquired.  

During design phase:  
  

  

  

 Requriments and design specification are performed. 

 Adherence to project standard is monitor.  



During implementation phase:  
 Requirements, design specification and source code are perfomed . 

 

  

During testing phase:  
 Acceptance and preparation of test results are performed. 

 

 

 

 

 

 

  

Planning for independent verification and validation:  
  

 An independent organization  may provide verification of work products for some 

critical software Project  

 Veification makes sure that various work products are complete and consistence.  

 An external organization may verify that the design specification are complete 

and cosistance.  

 Source code is complete. 

 Validation involves. 

 Planning and execution of text cases. 

 Independent verification and validation results in high quality software product.  

Planning phase-dependent tools and technique:  
  

 Automated tools,specialized notation  and modern techniques are used  to develop 

software requriments specification, architectural and detailed design and the 

source code.  

 Management tools such as structures, charts, are used to track and control 

progress.  

Other planning activities:  
 It includes: 

1. primilinary cost estimate. 

2. primilinary development schedule 

3. primilinary staffing levels. 

4. primilinary estimates of the computing resources and personnel require  to operate  

and maintain the system. 

 

 

 

 

  

UNIT II  
                                    



SOFTWARE COST ESTIMATION 
 
  

INTRODUCTION 
                        
  

MAJOR  FACTORS  
   

 most difficult task in software engineering 

 difficult to make estimate during planning phase 

 
series of cost estimation 

 
preliminary estimate is prepared during planning 

 
an improved estimate is presented at the software  
requirements review 

 
final estimate is prepares at the preliminary design  
view  

 
program ability  

 Product complexity 

 Product size 

 
Available time  

 Required reliability 

 
Level of technology  
 
PROGRAM ABILITY 
  

 The goal was to determine relative influence of batch 

and time shared access on programmer’s productivity  

 Example: 12 experienced programmer’s were each 

given two programming problems to solve some use 
batch facilities and some using time sharing 
  

 Resulting differences in individual performance 

among the programmers were much greaterthan 
could be atributed to the relatively small effect of 



batch or time shared machine access 
  

 On very large projects te differences in individual 

programmers ability will tend to average out 
  

 But on projects involving 5 or fewer programmers, 

individual difference in ability can be significant 
  
  

 
PRODUCT COMPLEXITY 
  

 
There are three categories of software products 

 
Application programs-include data processing and  
scientific programs  

 
Utility programs-it include compilers,assemblers  

 
System programs-it include operating  
system,dbms,real time system 

 
Application programs are defveloped in environment  
provided by the language compilers such as 
fortran,pascal  

 
Utility programs are written to provide user 
procesing environment  

 
System programs interact directly with the hardware  

 
Brook’s states that utility programs are three times as 
difficult to write as application programs 
  

 
System programs are three times as difficult to write 
as utility programs  

 Product complexity are 1-3-9 for application 

,utility,system programs 
  

 Boehm uses three levels of product complexity 

equations of total programmer month of effort pm is 



provided in terms of the number of thousands of 
delievered source instruction ,KDSI 
  
HOUSE KEEPING CODE  

 programmer cost for the software project=the effort 

in programmer mnth*cost per programmer month 
  

 
in this terminology the three levels of product 
complexity are organic ,semidetached,embedded 
  

 
organic-application,entity-semidetached,embeddedsystem 

 
 

 
application program:pm=2.4*(KDSI)**1.05  
utility programs:pm=3.2*(KDSI)**1.12 
system programs:pm=3.6*(KDSI)**1.20  

 example:for a development of a60,000 line application 

programs,utility programs and system programs the 
ratio of pm:1 to 1.7 to 2.8 
  

 the development time for a program   
        application program TDEV=2.5*(pm)**0.38 
        utility programs TDEV=2.5*(pm)**0.35 
        system programs TDEV=2.5*(pm)**0.32  

 given the total programmer months for a project and 

the development time the average staffing level is 
obtained by 
  
application 
program:176.6pm/17.85mo=9.9programmers 
utility program:294pm/18.3mo=16programmers 
system programm:489.6pm/18.1mo=27programmers  

 failures in estimating the numberof source 

instructions in a software product is to under estimate 
the amount of house keeping code require  
    

 posuiton of the source code that handles  
input,output,interactive user communication,error 
checking and error handling  

PRODUCT SIZE 

 A large software product is more epensive to develop  



than a small one 

 

 
Boehm equation indicate that the rate of increase in  
required effort grows with number of source 
instruction at an exponential  

 Using exponents of 0.91 and 1.83 results in estimatesof 

1.88 and 3.5 more effort for a product that is twice as 
large ,and factors of 8.1 and 67.6 for products that are 
10 times as large as known product 
  

 These estimates differ by factors of 1.86(3.5/1.88)for 

products that are twice as large and 8.3(76.6/8.1) for 
products that are 10 times as large 
  
Effort equation Schedule equation Reference  
PM=5.2(KDSI)**0.91 TDEV=2.47(MM)**0.35 (WAL77) 
PM=4.9(KDSI)**0.98 TDEV=3.04(MM)**0.36 (NEL78) 
PM=1.5(KDSI)**1.02 TDEV=4.38(MM)**0.25 (FRE79) 
PM=2.4(KDSI)**1.05 TDEV=2.50(MM)**0.38 (BOE81)  
PM=3.0(KDSI)**1.12 TDEV=2.50(MM)**0.35 (BOE81) 
PM=3.6(KDSI)**1.40 TDEV=2.50(MM)**0.32 (BOE81) 
PM=1.0(KDSI)**1.50 - (JON77) 
PM=0.7(KDSI)**1.50 - (HAL77)  
  

 Depending on the exponent used we can easily be off by 

a factor of 2 in estimating effort for a product twice the 
size of a known product and by a factor of 10 for a 
product 10 times the size of known product,even if all 
other factors tat influence cost remain constant 
  
AVAILABLE TIME 

 Total project effort is sensitive to the calander time  
  
available for project competitiom 

 

 Software projects require more total effort,if  

development time is compressed or expanded from the 
optional time 
  

 According to putnam, project effort is inversely 

proportional to the fourth power of the development 
time E=k/(TD**4) 
  



 
This formula predicts zero effort for infinite 
development time  

 
Putnam also states that the development schedule 
cannot be compressed below about 86%of the nominal 
schedule regardless of the number of people or 
resources utilized  

 
Boehm states that “there is a limit beyond which a  
software project cannot reduce its schedule by buying 
more personnel and equipment “ 
  
REQUIRED LEVEL OF RELIABILITY  
 The ability of a program to perform a required 
function under stated conditions for a stated period of 
time  
 Accuracy 
 Robustness 
 Completeness  
 Consistency 

 These characteristics can be built in to a software  
product 

 There is a cost associated with different hases to ensure  
high reliability  

 Product failure may cause slightly inconvienience to the  
user 

 While failure of other products may incur high  
financial loss or risk to human life 
  
                                   
              
 
 
   

Development effort multiliers for software reliability            

Category Effect of failure  
Effort multiplier 
Very low Slight inconvinience 0.75  
Low Losses easily recovered 0.88 
Nominal Moderately difficult to  
recover loses 
1.00  
High High financial loss 1.15 
Very high Resk to human life 1.40 



  

 
 
LEVEL OF TECHNOLOGY  
 In a software development required project is reflected by 
1. programming language  
2. abstract machine 
3. programming practises 
4. software tools used  

 modern programming languages provides additional 
features to improve programmer productivity and  
software reliability 

 these features include  
1. strong type checking 
2. data abstraction  
3. separate computation 
4. exception handling  

 productivity will suffer if programmers must learn a new 
machine environment as part of the development process  

 modern programming practises include the use of  
a) systematic analysis and design technique 
b) structure designed notations  
c) inspection 
d) structured coding 
e) systematic testing 
f) program development library  

 software tools range from elementary tools such as 
assemblers compilers,interactive text editors and DBMs  
 
  

SOFTWARE COST ESTIMATION TECHNIQUES  
    

 software cost estimates are based on past perfomance 

 cost estimates can be made either (i)top down (ii)bottom  

up 

 

 
Top-down:focus on system level cost such as computer  
resources.personnel level required to develop the system 

 

 
Bottom up:the cost to develop each module are subsystem.  

Then combined to arrive at an overall estimate 
 



1)EXPERT JUDGEMENT 
                      

 
Most widelly used cost estimation techniques(top down) 

 Expert judgement relies on the experience background and  

business sense of one or more key people in an organisation 
mode. Eg: an expert might arrive at a cost estimate in a 
following manner. 
  
i) To develop a process control system  

ii) It is similar to one that was developed 

last yr in 10 months at a cost of one 
million dollar 
  
iii) It was not a respectible profit 
iv) The new system has same control  

functions as the previous but 25%more 
control activities  
v) So the time and cost is increased by 25% 
vi) 
The previous sstem developed was the  
same 
vii) Same computer and controlling devices  

and many of the same people are 
available to develop the new sysem 
therefore 20% of the estimate is reduced 
  
viii) Resume of the low level code from the 

previous reduces the time and cost  

estimates by 25%  
ix) This results in estimation of eight lakhs $ 

and eight months.  
x) Small margin of safety so eight lakhs 

50,000$ and nine months development 
time  
xi) 
Advantage: experience 
  
2)DELPHI COST TECHNIQUES(ESTIMATION) 
  

 
This technique was developed at the rand corporation 
in 1948  



 
This technique can be adapted to software estimation 
in the following manner 
  
 
 
  

1. A co-ordinator was developed at the rand 

corporation in 1948 
  
2. 
estimators study the document and complete 
their estimates  
3. 
they ask questions to the co-ordinator but they 
wont discuss with one another  
4. the co-ordinator prepares and distributes a 

summary of the estimators response  
5. the estimators complete another estimate from 

the previous estimator  
6. 
the process is iterated for as many as required  
 
  
 
 
  
  
Input 

system  

Read 

module  

 
 
 
 
 
  
 
  

3)WORK DOWN BREAK STRUCTURE 

 A bottom-up estimation tool 

 
WBS is a hierarchical chart that accounts for the  
 



PROCESS HIERARCHY:  
       product  

Transform 

subsystem  

parser 

Data 

validator  

Output 

subsystem 

mmm  

Results 

computer  

indiviual parts of the system  

 
WBS chart can indicate either product hierarchy or 
process hierarchy  

 It identifies the product components and indicates the 

manner in which the components are interconnected 
  

 It identifies the work activity and relationship among 

those activities 
  
  

 Using WBS cost are estimated by assigning cost to 

each individual component in the chart and 
summing the cost 
  

 WBS are the most widely used cost estimation 

techniques  
4)ALGORITHMIC COST MODEL 

 
Constructive cost model(COCOMO)  

 
Algorithmic cost estimators compute the estimated 
cost of software system as the some of the cos of the 
module this model is bottom up estimates  

 The constructive cost model (COCOMO)is an 

algorithmic cost model described by boehm 
  

 In COCOMO model the equation calculates the 

programmmar month and deelopment schedule are 
used for the program unit based on the number of 
deliver source instruction(DSI) 
  



 Effort multipliers are used to adjacent the estimate 

for product attribute,computer,customer,and project 
attribute  

 The effort multipliers examines the daa from 63 

project and by using delphi technic 
  

 The COCOMO equation incorporates a number 

assumption .for eg. The organic mode application 
program equation applied in the following type of 
situation 
  
(i) small   to medium size project  
(ii)familiar application area 
(iii)stable 
(iv)in house development effort 
(v)effort multipliers are used to modify these 
assumption  

 It includes cost of dovumentation and reviews  

 It includes cost of program managers and program 
librarian  

 Software project estimated by COCOMO model include 
the following:  
(i) careful definition and validation 
and requirements is performend 
by a small number of people  
(ii) the requirements remains the 
same throughput the project  
(iii) definition and validation 
techniques of n architecture  
design is performed by a small 
number of capable people  
(iv) detailed design, coding and unit 
testing are performed in similar 
by a group of programmers 
working ion a teams  
(v) interface errors are mostly found 
by unit testing and by inspection  
(vi) documentation is performed as a 
path of development process  
                 
Multiplier Range of values 
Product attributes:  
  Required reliability 
  Database size 
  Product complexity 
Computer attributes: 



   Execution time constraint 
   Main storage constraint 
   Virtual machine volatility 
   Computer turnaround time 
Personnel attributes: 
   Analyst capability 
   Programmer capability 
   Applications experience 
   Virtual machine experience 
    Programming language experience 
Project attributes 
   Use of modern programming practises 
   Use of software tools  
Required development schedule 
      
 
0.75to1.40 
0.94to1.16 
0.70to1.65 
 
1.00to1.66 
1.00to1.56 
0.87to1.30 
0.87to1.15 
 
1.46to0.71 
1.42to0.70 
1.29to0.82 
1.21to0.90 
1.14to0.95 
 
1.24to0.82 
1.24to0.83 
1.23to1.10  

STAFFING LEVEL ESTIMATION 

 
the number of personel required throughput a software  

 
  
development project is not constant  

 planning an analysis are performed by a small group of people 

 architectural design by a larger or smaller group 

 detailed design by a larger number of people 

 implementation and system testing requires the largest number of  

people 



 

 in 1958 norden observed that research and development project  

follows a cycle of planning,design,prototype development and use 
wqit corresponding personnel utilization 
  
RAYLEIGH EQUATION:  
  

 Any particular point on the rayleigh curve represents the 
number of fulltime equivalent personnel required at the instant 
in time  

 Rayleigh curve is specified by two parameters  
(i)td-the time at which the curve reaches its maximujm value 
(ii)k-the toal area under the curve(ie) the  total effort required 
for the project  

 In 1976 putnam  studied 50 army software life cycle using 
rayleign curve  

 From his observation ,rayleigh curve reaches its maximum 
value td,during system testing and product release for many 
software products  

 From Boehm observation:Rayleigh curve is an accurate 
estimator of personal requirements for the development cycle 
from architectural design through implementation and system 
testing  

 FSP=PM(0.15TDEV+0.7t) 
   -(0.15TDEV+0.7t)^2                                           
                       (0.25(TDEV)^2        0.15(TDEV)^2  

ESTIMATING SOFTWARE MAINTENANCE COST 

 Software maintenance cost requires 40 to 60%of the total life  
  
cycle devoted to software product 

 
In some cases it may be 90% 

 Maintenance activities include  
1. enhancement to the product 
2. adapting the product to new processing enviroinment 
3. 
correcting problems 
4. distribution and maintenance activities includes  

enhancement-60%, adaptation-20%,error correction20% 
 

 during planning phase of the software project the major 
concened about the maintenance are   
(i) estimating the number of maintenance  
programmmers that will be needed 



(ii) specifying the facilities required for  
maintenance 

 A widely used estimators of maintenance personnel is the  
number of source lines that can be maintained by an individual 
programmers  

LIENTZ AND SWANION OBSERVATION  
 Maintenance programmers in a business data processing 
installatons maintains 32K  
 
  

 Full itme software personnel needed for software maintenance 
can be determined by dividing the estimated number of source 
instructions to be maintained by the estimated number of 
instruction that can be maintained by a maintenance 
programmer  

 For example if a maintenance programmer can maintain 
32KDSI 2 maintenance programmer are required to maintain 
64KDSI ,FSPM=(64KDSI)/(32KDSI/FSP)=2FSPM  

 Boehm suggest that maintainence effort can be estimated by 
use of an acivity ratio,which is the number of source 
instructions to be added and modified in any given time period 
divided by the total number of instructions  

 Step:1 
 ACT=(DSI added+DSI modified)/DSI total) 

 The activity ratio is then multiplied by the number of  
programmer months required for development in a given time 
period to determine the number of programmer months 
required for maintenance in the corresponding time period  

 Step :2 
PM=ACT*MMdev 

 The enhancement is provided by an effort sdjustment factor to   
differentiate effort multipliers for maintenance 

 It is different from the effort multipliers used for ,multipliers 

 Step:3 
PMm=ACT*EAF*Mmdev 

 Heavy importance on reliability and the use of modem  
programming practises during development may reduce the 
amount of effort required for maintenance  

 If less importance on reliability and programming practises 
during development will increase the difficulty of maintenance  

Maintenance effort distribution (from LIE80)  
 
  
Activity %effort 
Enhancement  



  Improved efficiency  
  Improved docmentation 
  User enhancement 
Adaptation 
  Input data,files 
  Hardware,opeating system 
Correctin 
  Emergency fixes 
  Scheduled fixes 
other  
  
51.3 
4.0  
5.5 
41.8 
23.6 
17.4 
6.2 
21.7 
12.4 
9.3 
3.4  
 
 
 
 
  
 
 
 
 
 
 
 
  
 
  
   

UNIT III 
UNIT-3  
 
SOFTWARE REQUIREMENTS DEFINITION  
 
 
 



Introduction 
  
The analysis phase of s/w development involves project planning and s/w 
requirement definitions. 
 
The s/w requirement specification records the outcome of the s/w requirements 
definition activity. 
 
SRS is a technical specification of requirements for the s/w products. 
 
The SRS is based on the system definition. 
 
The requirements specification will state that what of the s/w product without 
implying how.  

 
 
 
4.1The S/W REQUIREMENTS SPECIFICATION  
 
Format of an s/w requirements specification  
Section1: Product overview and summary 

Section2: Development, operating, and maintenance environments 

Section3: External interfaces and data flow 

Section4: Functional requirements  
Section5: Performance requirements 

Section6: Exception handling 

Section7: Early subsets and implementation priorities 

Section8: Foreseeable modifications and enhancements 

Section9: Acceptance criteria 

Section10: design Hints and Guidelines 

Section11:cross-reference index 

Section12: Glossary of terms  
Section 1 and 2 present an overview of product features and the processing 
environments. 
 
Section 3 includes 
 
1. User displays 
2. Report formats 
3. Dataflow diagrams 
4. Data dictionary 
 
Dataflow diagram specify 
 
1. Data sources 
2. Data stores  
3. Transformations to be performed on the data. 
4. Flow of data 



5. Data stores 
 
Data store is a conceptual data structure that is logical characteristics of data or 
given importance on a dataflow diagrams. 
 
Data stores and data sinks are depicted by shaded rectangles. 
Transformations by ordinary rectangles. 
 
Data stores by open ended rectangles 
The arcs specify the dataflow. 
 
Dataflow diagrams are not concerned with decision structure or algorithmic 
details like flowchart.  

 
 
 
 
A data dictionary  
  
Entries include the name of the data item and its attributes. 
 
Section 4 of a SRS specifies the functional requirements for an s/w product. 
 
It specifies the relationship among inputs, actions and outputs. 
 
Section 5 specifies the performance requirements such as  
 
1. Response time for various activities. 
2. Processing time for various processes. 
3. Memory constraints.  
 
Section 6 specifies the exception handling. 
 
It includes actions to be taken and the messages to be display in response to 
undesired situations or events. 
 
 
 
Possible exceptions include 
 
1. Temporary resource failure. 
2. Permanent resource failure 
3. Incorrect 
4. Inconsistent 
5. out of range input data and parameters.  
 



Section 7 specifies early subset an implementation priorities for the system 
under development. 
 
Section 8 specifies the modification and enhancement. 
 
Section 9 specifies the acceptance criteria (various test). 
 
Section 10 contains design hints and guide lines. 
 
Section 11 specifies cross reference index. 
 
A cross reference directory should be provided to index to find the specific 
paragraph numbers in SRS. 
 
Section 12 provides definition of terms that are unfamiliar to the customers and 
the product developers.  

 
 
  
 
 
Desirable properties 
  
A requirement document should be 
 
1. Correct 
2. Complete 
3. Consistent 
4. Unambiguous  
5. Functional 
6. Verifiable 
7. Easily changed.  
 
An incorrect, an incomplete set of requirements can result in an s/w product that 
satisfies its requirements but doesn’t satisfy customer needs. 
 
S/w requirements should be functional in nature that is they should describe 
what is required without implying how the system will meet its requirements. 
 
Changes will occur and project success often depends on the ability to 
incorporate change without starting over. 
  
  

 
 



 
4.2 FORMAL SPECIFICATION TECNIQUQES 
  
Functional characteristics of an s/w product are one of the most important activities 
to be then during the requirement analysis.  
 
The advantage of formal notation is concise and ambiguous. 
  
 
They provide the basis for verification of the resulting s/w product.  
 
Two nations are used to specify the functional characteristics.    
                   1. Relational 
                   2. State oriented  

 
 
 
 
Relational notations  
  
It is based on the concept of entities and attributes.  
 
Entities are named elements in a system. 
 
The names are chosen to denote the nature of the elements. 
Eg: stack, queue 
 
Attributes are specified by applying functions and relations to the named entities. 
  
Attributes specify permitted operations on entities, relationships among entities and 
data flow between entities. 
 
 Relational notations include, 
 
1. Implicit equations  
2. Recurence relations 
3. Algebric axioms 
4. Regular expressions 
 
State oriented notations include 
 
1. Decision tables. 
2. Even tables. 
3. Transition tables. 
4. Finite state mechanism.- 



5. Petrinets.  

 
4.2.1 RELATIONAL NOTATIONS 
  
Implicit equations  
  
It states the properties of a solution without stating a solution method.  
E.g. Matrix inversion           M*M^1=I+-E 
 
Matrix inversion is specified such that matrix product of the original matrix M and 
the inverse of M, M yields the identity matrix I+_ the error matrix e (computation 
error). 
 
Complete specification of matrix inversion must include items such as matrix size, 
type of data elements etc…. 
 
Given a complete functional specification for matrix inversion, design involves 
specifying a data structure, an algorithm for computing the inverse.  
  
Recurrence relations 
  
It consists of on initial part called the basis and one or more recursive parts. 
 
The recursive part describe the decide value of a function in terms of other value of 
the function 
 
Eg.fibonaccies number,F1(0)=0,F1(1)=1,F1(n)=F1(N-1) belongs to F1(N*2) for all 
n>1. 
  
Recurrence relation is easily transformed into recursive programs.  

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
4.2.2 STATE ORIENTED NOTATIONS 
 
Decision tables 
  
It provides a mechanism for recording complex decision logic.  
 
Decision table is segmented into four quadrants   
 
1. Condition stub  
It contains all of the conditions being examined. 
 
2. Condition entry  
It is used to combine conditions into decision rules. 
 
3. Action stub 
It describes the actions to be taken in response to a decision rules. 
 
4. Action entry 
It relates decision rules to actions.  
  
Orders are approved if the credit limit is not exceeded or if the credit limit is 
exceeded but past experience is good or if a special arrangement has made 
otherwise the order is rejected. 
 
The(y, n,-) entries in each column of the condition entry quadrant form a 
decision rule. 
 
 Ambiguous pairs of decision rules that specify identical actions are said to be 
redundant. 
 
Those specifying different actions are contradictory. 
 
Table 4.5  
  
 
  
R3 and R4 are redundant rules. 
 
R2 and R3, R2 and R4 are contradictory. 
 
A decision table is complete if every possible set of conditions has a 
corresponding actions prescribed. 
 
Table 4.6  



  
  

 
 
 
 
EVENT TABLES  
 
Its specify actions to be taken when event occur under different sets of conditions, 
 
A two dimensional event table relates actions to two variables. 
 
F (M, E) =A 
 
M denotes the current set of operating conditions. 
E is the event. 
 
A is the actions to be taken. 
 
E.g. if a   system is in startup mode (EU) and event E13 occur action A16 is to be 
taken f (SU, E13) =A16. 
 
E.g. actions separated by semicolon .e.g. (A14, A32) it denotes A14 followed 
sequentially by A32.  

 
 
 
TRANSITION TABLE  
 
 It is used to specify changes in the state of a system. 
Given the correct state and the current condition the next state results. 
 
F (si,sj)= sk 
 
SK=next state  
 
Cj=current condition 
 
Sj=current state  
 
Given current state S1 and current input b the system will go to state S0.  
F (S1, b) =S0 
 
In transition diagrams state becomes nodes. In a directed craft. 
Transitions are represented as arcs between nodes.  



 
 
 
FINITE STATE MECHANISM  
 
Data flow diagrams, regular expressions, transition tables are combined in finite 
state mechanism.  
 
The data flow diagram for a s/w system consisting of a set of process interconnected  
by data streams. 
 
Data streams are specified using regular expressions. 
 
Process can be described using transition table.  
 
Processes split states in initial state so and wait for input D3.  
 
In state S2 split writes zero or more D12 msgs to F7, then on receipt of the end of 
data marker De. Closes F7 and returns to state so to wait for next transmit ion.  

 
Limitations  
 
Finite state mechanism is not possible for complex system. Because it involves large 
no of states and many combination of input data.  

 
 
PETRINETS   

 
Petrinets were invented in the 1960s by Carl Petri at the university of Bonn, West 
Germany. 
 
They provide a graphical representation technique and systematic and systematic 
methods. 
 
It was invented to overcome the limitations finite state mechanism. 
(e.g.) 1. Concurrent systems are designed to permit simultaneous execution of the 
s/w  
 
Components called task or process on multiple processors. 
 
Concurrent task must be synchronized to permit communication among task that  
operates at different execution rates, to prevent simultaneous updating of shared 
data and to prevent deadlock. 
 
Deadlock occurs when all the task in a system are waiting for data or other 



resources that can also waiting on other task. 
 
Fundamental problems of concurrency are synchronization, mutual exclusion and 
deadlocks. 
     
 
A pertinent is represented as a misdirected graph  
 
Two types of nodes are used in a petrinets called places and transition. 
 
Places are marked by tokens. 
 
Petrinets are characterized by an initial marking of places and a firing rule. 
 
A firing rule has two aspects. 
 
A transition is enabling if every input place has at least one token.  
 
An enable a transition can fire.  
 When a transition fires each input place of that transition looses one token and 
each output place of that transition gains one token. 
 
A marked petrinets is commonly defined as a quadruple -4 values in a system. 
 
Consisting of a set of places as set of transition t, a set of arcs a and a marking m 
.C= (p, t, a, m).  
  
 
4.3 LANGUAGES AND PROCESSORS FOR REQUIREMENTS 
SPECIFICATION 
  
A no of special purpose language and processor have been developed. 
 
It permits concise stmt and automated analysis of requirement specification for 
s/w. 
 
Some specification languages are graphical in nature. 
 
Some are textual imager.  

 
 
Problem stmt language/problem stmt analyzer (PSL/PSA) 
  
 
It was developed by proff.Daniel Teichrow at the University of Michigan. 



 
The problem stmt analyzer is the PSL processor. 
 
This model describes a system as a set of objects and each object have properties 
and each property have their own values. 
 
Objects may be interconnected. 
 
These connections are called relationship. 
 
The objective of PSL 
 
Is to permit expression of much of the information’s that commonly appears in 
SRS. 
 
In PSL system discretions can be divided into 8 major categories.  
 
1. System input output flow 
It deals with the interaction b/w the system and its environment. 
 
2. System structure  
It is concerned with the higher achy among objects in a system. 
 
3. Data structure 
It includes all the relationships that exist among the data used. 
4. Data derivation  
It specifies which data objects are involved in particular process in the system.  
 
5. System size and volume 
It is concerned with the size of the system and those factors that influence the 
volume of processing required. 
 
6. System dynamics  
It presents the manner in which the system behaves overtime. 
 
7. System properties 
It specifies the properties if the system object. 
 
8. Project management 
It specifies the project related information as well as product related 
information.  

 
 
Problem statement analyzer 
  
The problem statement analyzer is an automated analyzer for processing 



requirements stated in PSL. 
 
PSA operates on a database of information collected from a PSL description. 
 
PSA system provide reports in four categories 
 
1. Database modification reports. 
2. Reference reports. 
3. Summary reports.  
      4. Analysis report. 
 
  

1. Database modification reports  
 
It list changes mode in the last report with warning msgs.  
  
These reports provide a record of changes for error correction and recovery.  

 
2. Reference reports  
  
It includes name list reports. 
 
It lists all the objects in the database with types and data lost change. 
 
1. Formatted problem statement reports. 
It shows properties and relationships for a particular object.  
 
 
2. Dictionary report  
It provides a data dictionary.  

 
3. Summary report 
  
It presents information’s collected from several relationships.  
1. Database summary report 
 
It provides project management information’s by listing the total no of objects of 
various types.  

 
4. Structure report  
 
It shows complete and partial higherarchiy. 
 
1. External picture report 
It describes data flow in graphical form.  



 
5. Analysis report 
  
1. Content comparison report  
It compares the similarity of input and output.  
 
2. Data processing interaction report  
Used to detect gapes in information flow and unused data objects.  
 
3. Processing chain report  
It shows the dynamic behavior of the system.  
 
PSL/PAS is a useful tool for documenting s/w requirements.  
 
It changes the ways in which s/w is developed in the organization.  
 
Some times the changes may be better and some times for the worst. 
 
Tools don’t solve problems. 
 
It is used to improve s/w quality and programmer productivity. 
 
 
 
  
 

RSL (REQUIREMENT STATEMENT LANGUAGE)  
  
 
It was developed by the TRW defense and space systems group. 
 
It is used to permit concise and unambiguous specification of requirement for 
real time s/w systems. 
 
RSL and REVS are components of s/w requirements engineering methodology. 
 
RSL has for primitive concepts 
 
1. Elements-which name objects. 
 
2. Attributes 
It describes the characteristics of elements. 
 
3. Relationships 
It describes the relation b/w elements. 
 



4. Structure 
Composed of notes and processing steps. 
(e.g.) RSL element 
“Data” 
“Initial value” is an attribute of the element data. 
“Input” specifies the relationship b/w a data item and a processing step. 
 
Specifying requirements in this approach makes explicit the sequences of the 
processing steps required. 
 
The processing step may be done by several different s/w components and an s/w  
component may incorporate several processing step. 
 
Follows are specified in the RSL as requirement network 
 
R-NETS have both graphical and textual representation.  
 
The requirements engineering validation system operates on RSL stmts. 
 
 It consists of three major components 
1. A translator for RSL 
2. a centralized database, the abstract system semantic model. 
3. A set of automated tools for processing information in ASSM. 
 
(e.g.)Air defense system.  

 
  
 
 
 
 
 
 
STRUCTURED ANALYSIS AND DESIGN TECHNIQUES 
  
 
SADT implements a graphical language. And a set of methods and management 
guidelines for using the language. 
 
The SADT language is called a language of structured analysis. 
 
Each diagram is drawn on a single page. 
 
On an actigram the nodes denote activities and the arcs specify data flow b/w 
activities. 



 
Datagram’s re important for at least two reasons: to indicate all activities 
affected by a given data object, and to check the completeness and consistency of 
an SADT model by constructing data diagrams from a set of actigrams.  
   
  
Fig a illustrates the formats of actigrams and datagram nodes. It is 
important to note that four distinct types of arcs can be attached to each 
node. 
 
Arcs coming into the left side of a node carry inputs and arcs leaving the 
right side of a node convey outputs. 
 
Arcs entering the top of a node convey control and arcs entering bottom 
specify mechanism the concept of input, output, control and mechanism 
bound the context of each node in an SA diagram.  
 
Outputs provide input and control for other nodes. 
 
In a datagram the input is the activity that creates the data object and the 
output is the activity that used the data object.  

 
           STRUCTURED SYSTEM ANALYSIS  
  
 
Two similar several of SSA was described by Gane and Sarson and by 
Demarco. 
 
SSA is used to traditional data processing environment. 
 
SSA uses a graphical language to build models of systems. 
 
SSA incorporates databases concept. 
 
There are four basic features of SSA 
1. Data flow diagrams  
2. Data dictionaries 
3. Procedure logic representation 
4. Data store structuring techniques. 
  
1. 

 Data flow diagrams 
  
Open ended rectangle indicates resources 
Labels on the arcs denote data items. 
 



Shaded rectangles depicts source and since for data. 
Remaining rectangles indicates processing steps. 
 
  
2. 

 Data dictionary  
It is used defined and record data elements  
 
3. 

 Procedure logic representation  

Decision tables ad structured English are used to specify algorithmic 
processing details.  

 
 
Important features of SSA 
 
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Relational model is used to specify data flow and data stores. 
 
Relations are composed from the fields of data records. 
 
These fields are called a domain of the relation. 
 
If the record has n fields then the relation is called n tuple.  

 
  



 
  

 
 
  

                                                                                                                                                                                                                             
 


