

PONNAIYAH RAMAJAM INSTITUTION
(An ISO 9001:2008 Certified Institution)

VALLAM-THANJAVUR-613403

E-LEARNING MATERIAL

 Submitted by

 DEPARTMENT OF CSE

 PONNAIYAH RAMAJAYAM ENGINEERING COLLEGE

Subject Code Title: CS2353- OBJECT ORIENTED ANALYSIS AND DESIGN

Year/ Semester : III & VI

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 1

CS2353 OBJECT ORIENTED ANALYSIS AND DESIGN L T P C

 3 0 0 3

OBJECTIVES:

1. To learn basic OO analysis and design skills through an elaborate case study

2. To use the UML design diagrams

3. To apply the appropriate design patterns

UNIT I 9

Introduction to OOAD – What is OOAD? – What is UML? What are the United

process(UP) phases - Case study – the NextGen POS system, Inception -Use case

Modeling - Relating Use cases – include, extend and generalization.

UNIT II 9

Elaboration - Domain Models - Finding conceptual classes and description classes –

Associations – Attributes – Domain model refinement – Finding conceptual class

hierarchies- Aggregation and Composition- UML activity diagrams and modeling

UNIT III 9

System sequence diagrams - Relationship between sequence diagrams and use cases

Logical architecture and UML package diagram – Logical architecture refinement - UML

class diagrams - UML interaction diagrams

UNIT IV 9

GRASP: Designing objects with responsibilities – Creator – Information expert – Low

Coupling –Controller – High Cohesion – Designing for visibility - Applying GoF design

patterns – adapter, singleton, factory and observer patterns.

UNIT V 9

UML state diagrams and modeling - Operation contracts- Mapping design to code -UML

deployment and component diagrams

TOTAL: 45 PERIODS

TEXT BOOK :

1.Craig Larman,"Applying UML and Patterns: An Introduction to object-oriented

Analysis and Design and iterative development”, Third Edition, Pearson Education,

2005

REFERENCES:

1. Mike O’Docherty, “Object-Oriented Analysis & Design: Understanding System

Development with UML 2.0”, John Wiley & Sons, 2005.

2. James W- Cooper, Addison-Wesley, “Java Design Patterns – A Tutorial”, 2000.

3. Micheal Blaha, James Rambaugh, “Object-Oriented Modeling and Design with UML”,

Second Edition, Prentice Hall of India Private Limited, 2007

4. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,“Design patterns:

Elements of Reusable object-oriented software”, Addison-Wesley, 1995.tatement.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 1

UNIT I

INTRODUCTION TO OOAD

 What is OOAD? 


 What is UML? 

What is OOAD?

 During OOA there is an emphasis on finding and describing the objects or concepts

in the problem.

 (Ex) In the case of the flight information system, some of the concepts include plane,

flight and pilot.

 During OOD there is an emphasis on defining software objects and how they
collaborate to fulfill the requirements.

 (Ex) a plane software object may have a tail number attribute and a get flight

history method.

What is UML?

UML is a language for specifying, constructing, visualizing and documenting the

software system and its components. The UML is a graphical language with sets of rules and

semantics, the rules and semantics of a model are expressed in English.

 Three ways to apply UML 


 Three perspectives to apply UML 


 The meaning of class in different perspectives 

Three ways to apply UML

 UML as sketch 


 UML as blueprint 


 UML as programming language 

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 2

UML as sketch

Informal and incomplete diagrams created to explore difficult parts of the problem or

solution space, exploiting the power of visual languages.

UML as blueprint

(1) Reverse engg to visualize and better understanding existing code in UML

 (Or)

(2) Code generation (forward engg)

 If reverse engg, a UML tool reads the source and generates UML packages,

class and sequence diagrams. These blueprints can help the reader understand

the big picture elements, structure and collaborations.

 Before programming, some detailed diagrams can provide guidance for code

generation, either manually or automatically with a tool.

UML as programming language

Complete executable specification of a software system in UML, executable code will

be automatically generated but is not seen or modified by developers.

Three perspectives to apply UML

 Conceptual perspective 


 Specification (software) perspective 


 Implementation (software) perspective 

Conceptual perspective

The diagrams are interpreted as describing things in a situation of the real world or

domain of interest.

Specification (software) perspective

 The diagrams describe software abstractionscoor components with specifications .
and interfaces, but no commitment to a particular implementation.

Implementation (software) perspective

The diagrams describe software implementations in a particular technology.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 3

The meaning of class in different perspectives

In UML, a class is drawn as rectangular boxes are called classes.

 Conceptual class- real world concept or thing. A conceptual or essential

perspective. 

 Software class- a class representing a specification or implementation

perspective of a software component, regardless of the process or method. 

 Implementation class – a class implemented in a specific OO language such as

java. 

What are the unified process phases?

 Inception 


 Elaboration 


 Construction 


 Transition 

Inception

Approximate vision, business case, scope, vague estimates.

Elaboration

Refined vision, iterative implementation of the core architecture, resolution of

high risks, identification of most requirements and scope, more realistic estimates.

Construction

Iterative implementation of the remaining lower risk and easier elements, and

preparation for deployment.

Transition

Beta tests, deployment.

Inception is not a requirements phase, rather, it is a feasibility phase, where just enough

investigation is done to support a decision to continue or stop.

Similarly, elaboration is not the requirements or design phase, rather, it is a phase where the

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 4

core architecture is iteratively implemented, and high risk issues are mitigated.

Inception

It is the initial step to establish a common vision and basic scope for the project. It

will include analysis of perhaps 10% of the use cases, analysis of the critical non-functional

requirement environment so that programming can start in the following elaboration phase.

Inception artifacts

Vision and business case

Use-case model

Supplementary specification

Glossary

Risk list and risk management plan

Prototypes and proof of concepts

Iteration plan

Phase plan and software development plan

Development case

These artifacts are only partially completed in this phase. They will be iteratively refined in

subsequent iterations. Name capitalization implies an officially named UP artifact.

CASE STUDY – the NextGen POS system

In this apparently straightforward problem domain, we shall see that there are

interesting requirement and design problems to solve. In addition, it’s a real problem-groups

really do develop POS systems with object technologies.

Use case modeling

 The UP defines the use case model within the requirements discipline.

Primarily, this is the set of all written use cases; it is a model of the systems

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 5

functionality and environment. 

 Use cases are text documents, not diagrams, and use case modeling is

primarily an act of writing text, not drawing diagrams. 

 The use case model is not only requirement artifact in the UP. There are also

the supplementary Specification, Glossary, Vision, and Business Rules. These

are all useful for requirements analysis, but secondary at this point. 

 The use case model may optionally include a UML use case diagram to show

the names of the use cases and actors, and their relationships. It also provides

a quick way to list the use cases by name. 

Relating use cases

Include

Extend

Generalization

Include relationship

Use includes when you are repeating yourself in two or more separate use cases and

you want to avoid repetition.

Another motivation is simply to decompose the long use case into subunits to

improve comprehension.

Another use of the include relationship is to describe the handling of an asynchronous

event, such as when a user is able to, at any time, select or branch to a particular window,

function or within a range of steps.

Extend relationship

The extend relationship is used when we have one use case that is similar to another

use case but does a bit more. In essence, it is like a subclass.

Generalization

It is the activity of identifying commonality among concepts and defining super

class (general concept) and subclass (specialized concepts) relationships.

It is a way to construct taxonomic classifications among concepts which are then

illustrated in class hierarchies.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 6

Various relationships among use cases

Classify type of

Appointment
<<include>>

 appointment

 <<uses>>

<<include>>

Doctor <<extend>>

Doctors’

 availability

 Collect

 preinformation

 cancel <<include>>

 appointment

 Fix appointment

Generalization

Validate user

Check password Voice recognition

.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 7

Patient

In-Patient
Out-

 Patient

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 8

UNIT II

Elaboration

Elaboration is the initial series of interactions during which, on a normal project:

 The core, risky software architecture is programmed and tested 


 The majority of requirements are discovered and stabilized 


 The major risks are mitigated or retired 

Elaboration is the initial series of iterations during which the team does serious

investigation, implements (program and tests) the core architecture, clarifies most

requirements, and tackles the high-risk issues.

Elaboration often consists of two or more iterations; each iteration is recommended to be

between two and six weeks, prefer the shorter versions unless the

team size is massive. Each iteration is time boxed, meaning its end date is fixed.

Elaboration is not a design phase or a phase when the models are fully developed in

preparation for implementation in the construction step- that would be an example of

superimposing waterfall ideas on iterative development and the UP.

Some key ideas and best practices will manifest in elaboration:

 Do short time boxed risk-driven iterations 


 Start programming early 


 Adaptively design, implement, and test the core and risky parts of the

architecture 

 Test early, often, realistically 


 Adapt based on feedback from tests, users, developers 


 Write most of the use cases and other requirements in detail, through a

series workshops, once per elaboration iteration

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 9

What artifacts may start in elaboration?

Sample elaboration artifacts, excluding those started in inception.

Artifact Comment

Domain model This is visualization of the domain concepts; it is similar to a

 static information model of the domain entities.

Design model This is the set of diagrams that describes the logical design.

 This includes software class diagrams, object interaction

 diagrams, Package diagrams and so forth.

Software A learning aid that summarizes the key architectural issues

Architecture and their resolution in the design. It is a summary of the

Document Outstanding design ideas and their motivation in the system.

Data model This includes the database schemas, and the mapping strategies

 between object and Non-object representations.

Use-case A description of the user interface, paths of navigation,

storyboards, usability

UI prototypes models and so forth.

You know You Didn’t Elaboration When…

 It is more than “a few” months long for most projects. 



 It only has one iteration 


 Most requirements were defined before elaboration 


 The risky elements and core architecture are not being tackled 


 There is no early and realistic testing. 


 The architecture is speculatively finalized before programming 

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 10

 It does not result in an executable architecture; there is no production- code

programming. 

 There is minimal feedback and adaptation; users are not continually engaged in

evaluation and feedback. 

 It is considered a step to do the proof-of-concept programming, rather than 

programming the production core executable architecture.

If a project exhibits these symptoms, the elaboration phase was not understood, and

waterfall- thinking has been superimposed on the UP.

Domain models

What is a domain model?

Motivation: why create a domain model?

Guideline: how to create a domain model?

What is a domain model?

A domain model is a visual representation of conceptual classes or real-situation

objects in a domain. Domain models have also been called conceptual models, domain

object models and analysis object models.

In the UP “Domain Model” means a representation of real-situation conceptual

classes, not of software objects. The term does not mean a set of diagrams describing

software classes, the domain layer of a software architecture or software objects with

responsibilities. Applying UML notation, a domain model is illustrated with a set of class

diagrams in which no operations (method signature) are defined. It provides a conceptual

perspective. It may show:

 Domain objects or conceptual classes 


 Associations between conceptual classes 


 Attributes of conceptual classes 


PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 11

Definition: why call a domain model a “visual dictionary”?

The information it illustrates (using UML notation) could alternatively have been

expressed in plain text (in the UP glossary). But it’s easy to understand the terms and

especially their relationships in a visual language, since our brains are good at

understanding visual elements and line connection.

The domain model is a visual dictionary of the noteworthy abstractions, domain

vocabulary, and information content of the domain.

Definition: is a domain model picture of software business objects?

The following elements are not suitable in a domain model:

Software artifacts, such as a windowor a database, unless the.
domain being modeled are of software concepts, such as a model of

graphical userinterfaces.

Responsibilities or methods.

Definition: what are 2-traditional meanings of “domain model”?

Domain model is conceptual perspective of objects in a real situation of the world,

not a software perspective. But the term is overloaded; it also has been used to mean “the

domain layer of software objects”.

That is, the layer of software objects below the presentation or UI layer that is

composed of domain objects- software objects that represent things in the problem domain

space with related “business logic” or “domain logic” methods.

For example, a board software class with a getSquare method.

 Definition: what are conceptual classes? 

A conceptual class is an idea, thing, or object. More formally, a conceptual class may

be considered in terms of its symbol, intension, and extension (see Fig-9.5).

 Symbol – words or images representing a conceptual class 


 Intension – the definition of a conceptual class 

 Extension – the set of examples to which the conceptual class applies. 



PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 12



 Definition: are domain and data model the same thing? 

A domain model is not a data model, so do not exclude a class simply because the

requirements don’t indicate any obvious need to remember information about it or because

the conceptual class has no attributes.

Motivation: why create a domain model?

Motivation: lower representational gap with OO modeling. This is a key

idea in OO: use software class names in the domain layer inspired . from names in the

domain model, with objects having domain-familiar information and

responsibilities. Fig-9.6 illustrates the idea. This supports a low representational gap between

our mental and software models. And that’s not just a philosophical nicety- it has a practical

time and money impact. For example, a source code payroll program

written in 1953:

100001010100011110101011011010001010101010101111010101….

As compute science people, we know it runs, but the gap between this software

representation and our mental model of the payroll domain is huge, that profoundly affects

comprehension (and modification) of the software. OO modeling can lower that gap.

Guideline: how to create a domain model

Bounded by the current iteration requirements under design:

1. Find the conceptual classes

2. Draw them as classes in a UML class diagram.

3. Add associations and attributes.

Finding conceptual classes and description classes

Finding conceptual classes

Guideline: how to find conceptual classes?

3-strategies to find conceptual classes

1. Reuse or modify existing models. This is the first, best, and usually easiest

approach.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 13

2. Use a category list (see table 9.1)

3. Identify noun phrases.

Reusing existing models is excellent, but outside our scope. The second method, using

a category list, is also useful.

Guideline: when to model with description classes?

A description class contains information that describes something else. For

example, a Product Description that records the price, picture, and text description of an

Item. This was first named the Item- Descriptor pattern.

Motivation: why use description classes?

 Guideline: when are description classes useful? 

Associations

An association is a relationship between classes that indicates some meaningful and

interesting connection. In the UML associations are defined as “the semantic relationship

between two or more classifiers that involve connections among their instances”.

 Guideline: when to show an association? 


 Guideline: why should we avoid adding many associations? 


 Perspectives: will the associations be implemented in software? 


 Applying UML: association notation 

 Guideline: how to name an association in UML? 



 Applying UML: roles 


 Applying UML: multiplicity 


 Applying UML: multiple associations between two classes 


 Guideline: how to find associations with a common association list 

Attributes

It is useful to identify those attributes of conceptual classes that are needed to satisfy the

information requirements of the current scenarios under development. An

attribute is a logical data value of an object.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 14

Guideline: when to show attributes?

Applying UML: attribute notation

 More Notations

Guideline: where to record attribute requirements?

 Derived attributes

Guideline: what are suitable attribute types?

Focus on data type attributes in the domain model

Data types

Perspectives: what about attribute in code?

Guideline: when to define new data type classes?

Applying UML: where to illustrating these data type classes?

Guideline: no attributes representing foreign keys

Guideline: modeling quantities and unit

Domain model refinement

New concepts for the NextGen domain model

Noun phrase identification from the use cases

Authorization service transactions

Generalization

Defining conceptual super classes and sub classes

Generalization and conceptual class definition

Generalization and class sets

Conceptual subclass definition conformance

 When to define a conceptual subclass? 



 Motivations to partition a conceptual class into sub classes 
 When to define conceptual super class ? 

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 15

Finding conceptual class hierarchies

Conceptual Classes

Informally, a conceptual class is an idea, thing, or object. More formally, a conceptual class

maybe considered in terms ofits symbol, intension, and extension

Symbol-words orimages representing aconceptual class.

Intension-the definition ofaconceptual class.

Extension-the set ofexamples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transaction. We may choose

to name it by the symbol Sale. The intension of a Sale may state that it "represents the event of a

purchase transaction, and has adate and time."The extension ofSale is all the examples ofsales; in

other words, the set ofall sales.

 Payment classes

 Authorization service classes

 Authorization transaction classes

Both aggregation and composition are special kinds of associations. Aggregation is

used to represent ownership or a whole/part relationship, and composition is used to

represent an even stronger form of ownership. With composition, we get coincident

lifetime of part with the whole. The composite object has sole responsibility for the

disposition of its parts in terms of creation and destruction. In implementation terms, the

composite is responsible for memory allocation and deallocation.

Moreover, the multiplicity of the aggregate end may not exceed one; i.e., it is

unshared. An object may be part of only one composite at a time. If the composite is

destroyed, it must either destroy all its parts or else give responsibility for them to some

other object. A composite object can be designed with the knowledge that no other object

will destroy its parts.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 16

Composition can be used to model by-value aggregation, which is semantically

equivalent to an attribute. In fact, composition was originally called aggregation-by-value

in an earlier UML draft, with “normal” aggregation being thought of as aggregation-by-

reference. The definitions have changed slightly, but the general ideas still apply. The

distinction between aggregation and composition is more of a design concept and is not

usually relevant during analysis.

Finally, a word of warning on terminology. While UML uses the terms association,

aggregation, and composition with specific meanings, some object-oriented authors use one

or more of these terms with slightly different interpretations. For example, it is fairly

common to see all three UML relationships grouped under a single term, say composition,

and then to discuss object-oriented relationships as being either inheritance

(generalization) or composition.

 How to identify composition 


 A benefit of showing composition 


 Composition in the NextGen domain model . 

UML activity diagrams and modeling

 How to apply activity diagrams? 



 Business process modeling 


 Data flow modeling 


 Concurrent programming and parallel algorithm modeling 


 More UML activity diagram notation 


 Guidelines 


 Example: NextGen activity diagram 


 Process: activity diagrams in the UP 


 Background 

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 17

UML Activity Diagram

An activity diagram is a variation or special case of a state machine, in which the

states are activities representing the performance of operations and the transitions are

triggered by the completion of the operations.

The purpose of an activity diagram is to provide a view of flows and what is going on

inside a use case or among several classes. (See fig 28.7 in Pg.No- 483)

An activity is shown as a round box, containing the name of the operation. When an

operation symbol appears within an activity diagram or other state diagram, it

indicates the execution of the operation.

The concurrent control is represented by multiple arrows leaving a

synchronization bar, which is represented by a short thick bar with incoming and outgoing
arrows.

An activity diagram is usedmostlytoshow the internal state of an object, but external

events may appear in them. Activity and state diagrams express a decision when

conditions are used to indicate different possible transitions that depend on Boolean

conditions of container object.

Actions may be organized into swim lanes, each separated from neighboring swim

lanes by vertical solid lines on both sides. Each swim lane represents responsibility for part

of the overall activity and may be implemented by one or more objects

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 18

UNIT III

System sequence diagrams (SSD)

SSD is a fast and easily created artifact that illustrates input and output events related

to the systems under discussion. They are input to operation contracts and most importantly

object design. The UML contains notation in the form of sequence diagrams to illustrate

events from external actors to a system.

What are system sequence diagrams?

Motivation: why draw an SSD?

Applying UML: sequence diagrams

and use cases?

 otherexternal

Process: iterative and evolutionary SSDs

What are system sequence diagrams?

Use cases describe how external actors interact with the software system we are

interested in creating. During this interaction an actor generates system events to a system,

usually requesting some system operation to handle the event. The UML includes sequence

diagrams as a notation that can illustrate actor interactions and the operations initiated by

them.

A system sequence diagrams is a picture that shows, for one particular scenario of a

use case, the events that external actors generate, their order and inter system events. All

systems are treated as a black box; the emphasis of the diagram is events that cross the

system boundary from actors to systems.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 19

Motivation: why draw an SSD?

It is useful to know what, precisely, are the external input events the system

events. They are an important part of analyzing system behavior. System behavior is

a description of what a system does, without explaining how it does it. One part of

that description is a system sequence diagram. Other parts include the use cases and

system operation contracts.

We may be familiar with the idea of identifying the messages that go into one

software object. But this concept is useful at higher levels of components, including

the entire system viewed as one thing or object.

What is the relationship between SSDs and use cases?

An SSD shows system events for one scenario of a use case, therefore it is generated

from inspection of a use case (see figure 10.3)

How to name system events and operations?

System events should be expressed at the abstract level of intention rather than in

terms of the physical input device. It also improves clarity to start the name of a system event

with a verb (add…, enter…, end.., make…)

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 20

How to model SSDs involving other external systems?

SSDs can also be used to illustrate collaborations between systems. However, this is

deferred until a later iteration in the case study, since this iteration does not include remote

system collaboration.

What SSD information to place in the glossary?

The elements show in SSD (operation name, parameters, and return data) is terse.

These may need proper explanation so that during design it is clear what is coming in and

going out. The glossary is a great place for these details. (See fig-10.2 in

pg.no-175)

Don’t create SSDs for all scenarios, unless you are using an estimation technique (such as

function point counting)that requires identification of all system operations. Rather, draw them

only for the scenarios chosen for the next iteration. And,

they shouldn’t take long to sketch- perhaps a few minutes or a half hour.

SSDs are only very useful when you want to understand the interface and collaborations of

exiting systems, or to document the architecture.

 SSDs within UP 


 UP phases 

Logical architecture and UML package diagram

The Logical architecture is the large-scale organization of the software classes into

packages (or namespaces), subsystems, and layers. It’s called the logical architecture because

there’s no decision about hoe these elements are deployed across different operating system

processes or across physical computers in a network (these latter decision are part of the

deployment architecture)

A layer is a very coarse-grained grouping of classes, packages, or subsystems that has

cohesive responsibility for a major of the system. Also layers are organized such that

“higher” layers call upon services of “lower” layers, but not normally vice versa. Typically

layers in an OO system include:

 Process: iterative and evolutionary SSDs

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 21

 User interface 



 Application logic and domain objects 


 Technical services 

Applying UML: package diagrams

A package diagram is a grouping of model elements. Packages may contain other

packages. A package may contain both subordinate packages and ordinary model elements.

The entire system can be thought of as a single high level package with everything else in it.

All UML model elements and diagrams can be organized into packages. A package is

represented as a folder, shown as a large rectangle with a tab

attached to its upper left corner. The contents of the package are shown within the large

rectangle.

 UML tools: reverse-engineer package diagrams from code

 Guideline: design with layers

 Benefits of using layers

 Guideline: cohesive responsibilities; maintain a separation of concerns

 Code: mapping code organization to layers and UML packages

Logical architecture refinement

 NextGen logical architecture 



 Collaborations with the layers pattern 



 Other layer pattern issues 



 Model-view separation and “upward” communication 

UML class diagrams

UML class Diagram

It also referred to as object modeling, is the main static analysis diagram. A class

diagram is a collection of static modeling elements, such as classes and their relationships,

connected as a graph to each other and to their contents.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 22

Class notation: static structure

Object diagram

Class interface notation

Binary association notation

Association role

Qualifier

Multiplicity

 OR association

Association class

 N-Ary

Association 

 Aggregation and composition (a-part-

of)

Generalization

Class notation: static structure

A class is drawn as a rectangle with 3 components separated by horizontal line. The

top name compartment holds the class name, other general properties of the class. such as

attributes, are in the middle compartment and the bottom compartment holds a

list of operations.

Student

Name

Roll. No

Branch

Total ()

Avg ()

Object diagram

A static object diagram is an instance of a class diagram. It shows a snapshot of the

detailed state of the system at a point in time. Notation is the same for an object diagram and

a class diagram.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 23

Class interface notation

Class interface notation is used to describe the externally visible behavior of a class.

For (ex), an operation with public visibility. Identifying class interfaces is a design activity of

OO system development.

studentson

Binary association notation

 It is drawn as a solid path connecting 2 classes, or both ends may be connected to

triangle indicating the direction in which to read the name. The end of an association,

where it connects to a class, is called the association role.

WorksFor

 Company Person

 Employer Employee

Person

 marriedTo

Association role

A simple association-the technical term for it is binary association- is drawn as a solid

line connecting 2 class symbols. The end of an association, where it connects toclass, shoes

the association role. The role is part of the association, not part of the class. Each association

has 2 or more roles to which it is connected.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 24

Bank Account Person

The association worksFor connects 2 roles, employee and employer. A person is an

employee of a company and a company is an employer of a person.

The UML uses the term of association navigation or navigability to specify a role

affiliated with each end of an association relationship. An arrow may be attached to the

 end of the path to indicate that navigation is supported in the direction of the class

pointed to.

An arrow may be attached to neither, one, or both ends of the path. In particular,

arrows could be shown whenever navigation is supported in a given direction. In the

UML, association is represented by an open arrow.

Qualifier

A qualifier is an association attribute. For example, a person object may be associated

to the Bank object. An attribute of this association is the account#. The account# is the

qualifier of this association.

Bank

account#

*

0…1

Person

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 25

A qualifier is shown as a small rectangle attached to the end of an association path,

between the final path segment and the symbol of the class to which it connects. The

qualifier rectangle is part of the association path, not part of the class. The qualifier rectangle

usually is smaller than the attached class rectangle.

Multiplicity

It specifies the range of allowable association classes. An interval represents a

range of integers in this format,

Lower bound…… upper bound.

The term lower bound and upper bound are integer values, specifying the range of

integers including the lower bound to the upper bound. The star character (*) may be used for

the upper bound, denoting an unlimited upper bound. If a single integer value is

specified, then the integer range contains the single values. For example,

0…..1 0……*

1….3, 7….10, 15,19….*

OR Association

An OR association indicates a situation in which only one of several potential

association may be instantiated at one time for any single object. This is shown as a dashed

line connecting 2 or more associations, all of which must have a class in common, with the

constraint string or labeling the dashed line.

Person

Car

 or

Company

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 26

Association class

An association class is an association that also class properties. An association class

is shown as a class symbol attached by a dashed line to an association path.

Company Person

 Employer Employee

 Works for

 Salary

N-ary association

An n-ary association is an association among more than two classes. Since n-ary

association is more difficult to understand, it is better to convert an n-ary association to

binary association.

However, here, for the sake of completeness, we cover the notation of n-ary

association; an n-ary association is shown as a large diamond with a path from the diamond

to each participant class.

The name of the association (if any) is shown near the diamond.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 27

Year

* * Student

Class

class

GradeBook

Grade

Exam

Lab

the path to indicate aggregation. However,thediamond may not be attached to both ends of a

line, and it need not be presented at all. Composition, also known as the a-part-of, is

Aggregation and composition (a-part-of)

Aggregation is a form of association. A hollow diamond is attached to the end of

a form of aggregation with strong ownership to represent the component of a complex object.

Composition also referred to as a part-whole relationship.

Team
1 consistsOf

Player

class

Generalization

It is the relationship between a more general class and a more specific class.

Generalization is displayed as a directed line with a closed, hollow arrowhead at the super

class end.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 28

Ellipses (….) indicate that the generalization is incomplete and more subclasses exist

that are not shown.

Vehicle

Bus Truck Car

InteractionDiagrams

Interaction diagrams are diagrams that describe how groups of objects collaborate to get the

job done. Interaction diagrams capture the behavior of a single use case, showing the pattern

of interaction among objects. There are 2 kinds of interaction models,

1. Sequence diagrams

2. Collaboration diagrams

UML Sequence Diagram

A sequence diagram shows an interaction arranged in a time sequence. It shows the

objects participating in the interaction by their lifelines and the messages they exchange,

arranged in a time sequence.

A sequence diagram has two dimensions,

 Vertical dimension represents time 


 Horizontal dimension represents different objects. 

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 29

The vertical line is called the object’s lifeline. The lifeline represents the object’s

existence during the interaction. This form was first popularized by Jacobson. An object is

shown as a box at the top of a dashed vertical line. A role is a slot for an object within a

collaboration that describes the type of object that may play the role and its relationships to

other roles.

An example of a sequence diagram

Telephone call

caller

Exchange Receiver Talk

OffHook

DialTone

DialNumber

 Ring

Tone

OffHook

OnHook

A sequence diagram does not show the relationship among the roles or the association

among the objects. An object role is shown as a vertical line, the lifeline.

Each message is represented by an arrow between the lifelines of two objects. The

order in which these messages occur is shown top to bottom on the page. Each message is

labeled with the message name. The label also can include the argument and some

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 30

control information and show-delegation, a message that an object sends to itself, by sending

the message arrow back to the same lifeline.

The horizontal ordering of the lifelines is arbitrary. Often, call arrows are arranged to

process in one direction across the page, but this is not always possible and the order conveys

no information.

Advantages

Strengths

Weakness

1. The sequence diagram is very simple and has immediate visual appeal-

 this is its great strength.

2. A sequence diagram is an alternative way to understand the overflow of

 the control of a program.

3.

 Instead of looking at the code and trying to find out the overall sequence

 of behavior, you can use the sequence diagram to quickly understand that

 sequence

 Clearly shows sequence or time ordering of messages.

 Simple notation

 Forced to extend to the right when adding new objects, consumes

horizontal space.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 31

UNIT IV

GRASP: Designing Objects with Responsibilities

 Creator 



 Information expert 


 Low coupling 


 Controller 


 High cohesion 

Creator
Creator guides the assigning of responsibilities . related to the creation of objects,

a very common task. The basic intent of the creator pattern is to find a creator that . needs to

be connected to the created object in any event. Choosing it as the creator supports low

coupling.

Composite aggregates part, container contains content, and recorder records.

Recorded are all very common relationships between classes in a class diagram. Creator

suggests that the enclosing container or recorder class is a good candidate for the

responsibility of creating the thing contained or recorded. Of course this is only a guideline.

Contraindications

Creation requires significant complexity, such as using recycled instances for

performance, conditionally creating an instance from one of a family of similar classes based

upon some external property value, and so forth. In these cases, it is advisable to delegate

creation to a helper class called concrete factory or an abstract factory rather than use the

class suggested by creator.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 32

Benefits

 Low coupling is supported, which implies maintenance dependencies and

higher opportunities for reuse. 



 Coupling is probably not increased because the created class is likely already

visible to the creator class, due to the existing association that motivated its

choice as creator. 

Related patterns of principle

Low coupling

Concrete factory and abstract factory

Whole – part describes a pattern to define aggregate objects that support

encapsulation of components.

Information expert (or expert)

Information expert is frequently used in the assignment of responsibilities, it is a basic

guiding principle used continuously in object design. Expert is not meant to be an obscure or

fancy idea, it expresses the common “intuition” that objects do things related to the

information they have.

Expert usually leads to designs where a software object does those operations that are

normally done to the inanimate real-world thing in represents, peter coad calls this the “do it

myself” strategy.

The information expert pattern- like many things in object technology- has a real-

world analogy. We commonly give responsibility to individuals who have the information

necessary to fulfill a task.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 33

Benefits

 Information encapsulation is maintained. 



 This usually supports low coupling, which leads to more robust and maintainable

systems. Low coupling is also a GRASP pattern 

 Behavior is distributed across the classes that have the required information, thus

encouraging more cohesive “lightweight” class definitions that are easier to

understand and maintain. 


 High cohesion is usually supported. 

 It encourages you to assign a responsibility so that its placement does not

increase the coupling to a level that leads to the negative results that high coupling can

produce.

Low coupling supports the design of classes that are more independent, which

reduces the impact of change. It can’t be considered in isolation from other patterns such

as expert and high cohesion, but rather needs to be included as one of several design

principles that influence a choice in assigning a responsibility. A subclass is strongly

coupled to its super class.

The disadvantage of this sub classing is that it highly couples domain objects to

a particular technical service and mixes different architectural concerns, whereas the

advantage is automatic inheritance of persistence behavior.

High cohesion

Low coupling

Related patterns of principles

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 34

Benefits

 Not affected by changes in other components 



 Simple to understand in isolation 


 Convenient to reuse 

Related patterns

 Protected variation 

Controller

See also: Model view controller. The Controller pattern assigns the responsibility of dealing

with system events to a non-UI class that represent the overall system or a use case scenario.

A Controller object is a non-user interface object responsible for receiving or handling a

system event.

A use case controller should be used to deal with all system events of a use case, and may

be used for more than one use case (for instance, for use cases Create User and Delete User,

one can have one User Controller, instead of two separate use case controllers).

It is defined as the first object beyond the UI layer that receives and coordinates

("controls") a system operation. The controller should delegate to other objects the work that

needs to be done; it coordinates or controls the activity. It should not do much work itself.

The GRASP Controller can be thought of as being a part of the Application/Service layer in

an object-oriented system with common layers.

A Controller is the first object beyond the UI layer that is responsible for receiving

or handling a system operation message. A common defect in the design of controllers’

results from over- assignment of responsibility. A controller then suffers from bad

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 35

(low) cohesion, violating the principle of high cohesion. Normally, a controller delegate to

other objects the work that needs to be done; it coordinates or controls the activity. It does

not do much work itself.

Benefits

 Increased potential for reuse and pluggable interfaces 



 Opportunity to reason about the state of the use case 

High cohesion

 High Cohesion is an evaluative pattern that attempts to keep objects appropriately

focused, manageable and understandable. High cohesion is generally . used in

support of Low Coupling. Highcohesion means that the responsibilities of a given

element are strongly related and highly focused. Breaking programs into classes and

subsystems is an example of activities that increase the cohesive properties of a

system. Alternatively, low cohesion is a situation in which a given element has too

many unrelated responsibilities. Elements with low cohesion often suffer from being

hard to comprehend, hard to reuse, hard to maintain and adverse to change

 Like low coupling, high cohesion is a principle to keep in mind during all design

decisions; it is an underlying goal to continually consider. It is an evaluative principle

that a designer applies while evaluating all design decisions.

Degrees of functional cohesion

 Very low cohesion 

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 36

 Low cohesion 



 High cohesion 



 Moderate cohesion 

Designing for visibility

Visibility is the ability of one object to see or have reference to another.

When is visibility necessary?

To send a message from one object to another, the receiver object must be visible

to the sender, so the sender has to have a pointer or reference to the receiver.

Example:

If A sends messages to B, which must be visible to which?

B is visible to A means A can send a message to B.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 37

 Visibility — the ability of one object to “see” or have a reference to another Object. 


 Visibility is required for one object to message another 



 Attribute Visibility — Y is an attribute of ClassX 



 Parameter Visibility — Y is a parameter of MethodX 



 Local Visibility — Y is a (non-parameter) local object in a method of ClassX 



 Global Visibility — Y is globally visible (language dependent) 

Applying GOF design pattern

Singleton Pattern (Gang of Four)



 the instantiation of a class to one object. This is useful when

exactly one object is needed to coordinate actions across the system.

 Exactly one instance of a class is needed. Objects need a single point of

access. 

 Solution: 


 Define a class method that returns the singleton object, instantiating it if it

does not exist. 

 Example: 


 A print queue—many programs must access one queue. 

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 38

Illustrating Visibility in the UML

The Observer pattern is usually used in combination with other design patterns:

Factory pattern - It's very likely to use the factory pattern to create the Observers so

no changes will be required even in the main framework. The new observers can be added

directly in the configuration files.

Template Method - The observer pattern can be used in conjunction

with the Template Method Pattern to make sure that Subject state is self-consistent before

fication

Mediator Pattern - The mediator pattern can be used when we have cases of

complex cases of many subjects an many observers

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 39

The Observer Pattern

The Observer pattern assumes that the object containing the data is separate from the

objects that display the data, and that these display objects observe changes in that data.

When we implement the Observer pattern, we usually refer to the data as the Subject and

each of the displays as Observers. Each of these observers registers its interest in the data by

calling a public method in the Subject. Then, each observer has a known interface that the

subject calls when the data change.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 40

UNIT V

UML state or state chart diagrams and modeling

A state chart diagram (also called a state diagram) shows

the sequence of states that an object goes through during its life in

response to outside stimuli and messages. The state is the set of

values that describes an object at a specific point in time and is

represented by state symbols and the transitions are represented by

arrows connecting the state symbols. A state chart diagram may

contain sub diagrams.

A state diagram represents the state of the method

execution (that is, the state of

the object executing the method) and the activities in the diagram represent the activities

of the object that performs the method.

The purpose of the state diagram is to understand the algorithm involved in

performing a method.

A state is represented as a rounded box, which may contain one or more

compartments. The compartments are all optional.

 The name compartment holds the optional

name of the state. 


 The internal transition compartment holds a

list of internal actions or activities. 

An initial state is shown as a small dot and the transition

from the initial state may be labeled with the event that creates

the objects, otherwise, it is unlabeled.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 41

Idle

Lift receiver and get dial tone State

Start Dial Number.siValid ()

Entry and start Entry and

dialog exit and number. append (n)

stop dial tone

 digit (n)

A complex transition may have multiple source and target states. It represents

synchronization or a splitting of control into concurrent threads.

However, state diagrams useful when you have a class that is very dynamic. In effect,

state diagrams emphasize the use of events and states to determine the overall activity of the

system.

Operation contracts

Operation contracts use a pre and post condition form to describe detailed changes

to objects in a domain model, as the result of a system operation. A domain model is the

most common OOA model, but the operation contracts and state models can also be useful

OOA- related artifacts.

Operation contracts may be considered part of the UP use-case model because they

provide more analysis detail on the effect of the system operations implied in the use cases.

See fig- 11.1 in pg.no-182.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 42

Definition: what are the sections of a contract? Operation: name

of operation, and parameters

Cross references: use cases this operation can occur within

Preconditions: noteworthy assumptions about the state of the system or

objects in the domain model before execution of the operation. These are .

non-trivial assumptions the reader should be told. .
Post conditions: this is the most important section. The state of objects in

the domain model after completion of the operation.

Definition: what is a system operation?

Operation contracts may be defined for system operations- operations that the

system as a black box component offers in its public interface. System

operations can be identified.

Definition: post conditions

The post conditions describe changes in the state of objects in the domain model.

Domain model state changes include instances created, associations formed or broken,

and attributes changed.

Post conditions are not actions to be performed during the operation, rather they

are observations about the domain model objects that are true when the operation has

finished- after the smoke has cleared. The post conditions fall into these categories,

1 Instance creation and deletion

2 Attribute change of value

3 Association formed and broken

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 43

 How are post conditions related to the domain model? 


 Motivation: why post conditions? 


 Guideline: how to write a post condition? 


 Analogy: the spirit of post conditions: the stage and curtain 


 Guideline: how complete should post conditions be? Agile vs. heavy analysis 

Guideline: should we update the domain model?

 In iterative and evolutionary methods (and reflecting the reality of software projects), all

analysis and designartifactsare considered partial and imperfect, and evolve in response

to new discoveries.

Guideline: how to create and write contracts

Apply the following advice to create contracts:

1. Identify system operations from the SSDs.

2. For system operations that are complex and perhaps subtle in their results, or

which are not clear in the use case, construct a contract.

3. To describe the post conditions, use the following categories:

 Instance creation and deletion 


 Attribute modification 


 Associations formed and broken

Applying UML: operations, contracts, and the OCL

The UML formally defines operations. To quote:

An operation is a specification of a transformation or query that an object may be called to

execute.

In the UML Meta model, an operation has a signature and most importantly in this

context, is associated with a set of UML constraint objects classified as pre conditions and

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 44

post conditions that specify the semantics of the operation.

Operation contracts expressed with the OCL
The pre and post condition format is informal natural language- perfectly acceptable

in the UML and desirable to be easily understood.

But also associated with the UML is a formal, rigorous language called the Object

Constraint Language (OCL), which can be used to express constraints of UML

operations.

Process: operation contracts within the UP

A pre and pos condition contract is a well-known style to specify an operation in the

UML. In the UML, operations exist at many levels, from System down to fine-grained

classes, such as sale.

Operation contracts for the System level are part of the use-case model, although they

were not formally highlighted in the original RUP or UP documentation, their inclusion in

this model was verified with the RUP authors.

Phases

Inception – contracts are not motivated during inception- they are too detailed.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 45

Elaboration- if used at all, most contracts will be written during elaboration, when

most use cases are written. Only write contracts for the most complex and subtle system

operations.

Mapping design to code

Implementation in an OO language requires writing source code for:

 Class and interface definitions 


 Method definitions 

Creating class definitions from DCDs

DCDs depict the class or interface name, super class, operation signatures, and . attributes of a

class. This is sufficient to create abasis class definition in an OO . language. If the DCDs were

drawn in a UML tool, it can generate the basic class definition from the diagrams.

Creating methods from interaction diagrams

The sequence of the messages in an interaction diagram translates to series of

statements in the method definitions.

Collection classes in code

One- to - many relationships are common. The choice of collection class is of

course influenced by the requirements, key based lookup requires the use of a map, a

growing ordered list requires a list, and so on.

Guideline:

If an object implements an interface, declare the variable in terms of the interface,

not the concrete class.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 46

Exceptions and error handling

Exception handling has been ignored so far in the development of a solution. This

was intentional to focus on the basic questions of responsibility assignment and

object design. However, in application development, it’s wise to consider the logic-scale

exception handling strategies during design modeling and certainly during implementation.

Briefly, in terms of the UML, exceptions can be indicated in the property strings of

messages and operation declarations

Defining the Sale.makeLineItem method

Order of implementation

Test driven or test-first development

UML deployment and component diagrams

Deployment diagrams

A deployment diagram shows the assignment of concrete software artifacts (such as

executable files) to computational nodes (something with processing services).

It shows the deployment of software elements to the physical architecture and the

communication between physical elements. See figure 38.1. Deployment diagrams are useful

to communicate the physical or deployment architecture.

The basic elements of a deployment diagram are a node, of two types:

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 47

 Device node (or device) 




 Execution environment node (EEN) 

The notation in a deployment diagram includes the notation elements used in a

component diagram, with a couple of additions, including the concept of a node. A node

represents either a physical machine or a virtual machine node (e.g., a mainframe node).

To model a node, simply draw a three-dimensional cube with the name of the node at

the top of the cube. Use the naming convention used in sequence diagrams.

The three-dimensional boxes represent nodes,either software or hardware..
Physical nodes should labeledwiththestereotype device, to indicate that it is a physical

device such as a computer or switch.

Connections between nodes are represented with simple lines, and are

assignedstereotypes such as RMI and message bus to indicate the type of

connection.

PREC DEPARTMENT OF CSE & IT

CS2353-OOAD Page 48

Component diagrams

Component diagrams are a slightly fuzzy concept in the UML, because both classes

and components can be used to model the same thing.

A component represents a modular part of a system that encapsulates its contents and

whose manifestation is replaceable within its environment.

A component defines its behavior in terms of provided and required interfaces. As

such, a component serves as a type, whose conformance is defined by these provided and

required interfaces.

	page15
	page17
	page21
	page23
	page25
	page29
	page31
	page33
	page37
	page39
	page41
	page43
	page45
	page49
	page51
	page53
	page55
	page59
	page61
	page63
	page65
	page67
	page69
	page71
	page73
	page75
	page77
	page79
	page81
	page83
	page85
	page87
	page89
	page91
	page93
	page95
	page97

