FEI sem

N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any three questions from the remaining five.
(3) Figures to the right indicate full marks.

1. (a) Prove that $1=\cosh ^{2} x$

$$
1-\frac{1}{1-\frac{1}{1-\cosh ^{2} x}}
$$

(b) If $u=\log [\tan x+\tan y]_{2}$ prove that,
$\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}=2$.
(c) If $u=\frac{x+y}{1-x y}, v=\tan ^{-1} x+\tan ^{-1} y$, find $\frac{\partial(u, v)}{\partial(x, y)}$
(d) Show that $\log [1+\sin x]=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+$ \qquad
(c) Show that every square matrix can be uniquely expressed as $P+i Q$, where P and Q are Hermitian matrices.
(f) Find $n^{\text {th }}$ order derivative of $\frac{x^{2}+4}{(x-1)^{2}(2 x+3)}$
2. (a) Show that the roots of the equation $(x+1)^{6}+(x-1)^{6}=0$ are given by

$$
-i \cot \left[\frac{(2 k+1) \pi}{12}\right], k=0,1,2,3,4,5
$$

(b) Reduce the following matrix into nominal form and find its rank

6

$$
\left[\begin{array}{rrrr}
2 & -1 & 1 & 1 \\
1 & 0 & 1 & 2 \\
3 & 3 & 3 & 1 \\
1 & 4 & 2 & 0 \\
0 & -4 & -1 & 2
\end{array}\right]
$$

(c) State and prove the Euler's theorem for a homogeneous function in two variables. Hence find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ if $u-\frac{\sqrt{x y}}{\sqrt{x}+\sqrt{y}}$.

Con. 8962-KR-3357-12.
3. (a) Test for consistency and solve if consistent -

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}-x_{4}=2 ; x_{1}+2 x_{2}+2 x_{4}=1 \\
& 4 x_{2}-x_{3}+3 x_{4}=-1
\end{aligned}
$$

(b) Find all the stationary values of $x^{3}+3 x y-15 x^{2}-15 y^{2}+72 x$.
(c) If $\tan \left(\frac{\pi}{4}+i v\right)=r e^{i \theta}$, show that
(i) $\mathrm{r}=1$
(ii) $\tan \theta=\sinh 2 v$
(iii) $\tan h v=\tan \frac{\theta}{2}$.
4. (a) If $x=u+e^{-v} \sin u, y=v+e^{-u} \cos u$ find $\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ by using Jacobian.
(b) Considering only the principal value, if $(1+i \tan \alpha)^{1+i \tan \beta}$ is real, prove that its value 6 is $(\sec \alpha)^{\sec ^{2} \beta}$:
(c) Solve the system of linear equation by Crout's method

$$
x-y+2 z=2 ; \quad 3 x+2 y-3 z=2 ; \quad 4 x-4 y+2 z=2
$$

5. (a) Expand $\cos ^{7} \theta$ in a series of cosines of multiples of θ.
(b) Evaluate $\lim _{x \rightarrow 0}-\left[\frac{1}{x^{2}}-\cot ^{2} x\right]$
(c) If $y=\left(\sin ^{-1} x\right)^{2}$, obtain $y_{n}(0)$.
6. (a) Show that the vectors are linearly dependent and find the relation between them :-

$$
X_{1}=[1,2,-1,0], X_{2}=[1,3,1,2], X_{3}=[4,2,1,0], X_{4}=[6,1,0,1]
$$

(b) If $\frac{x^{2}}{1+u}+\frac{y^{2}}{2+u}+\frac{z^{2}}{3+u}=1$,

Prove that,

$$
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2}=2\left[x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}\right]
$$

(c) Fit a second degree parabolic curve to the following data :-

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

