Name :
Roll No. :

Invigilator's Signature : \qquad

CS/B.TECH(CHE)/SEM-7/CHE-701/2011-12

2011
MATHEMATICAL METHODS IN CHEMICAL ENGINEERING
Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) If A is a $n^{\text {th }}$ order square matrix then $\operatorname{det}(5 A)$ is
a) $5[\operatorname{det}(A)]^{n}$
b) $5 \operatorname{det}(A)$
c) $\quad 5^{n}[\operatorname{det}(A)]^{n}$
d) $\quad 5^{n} \operatorname{det}(A)$.
ii) The solution of a system of n linear equations with n unknowns is unique if and only if
a) $\operatorname{det} A=0$
b) $\operatorname{det} A>0$
c) $\operatorname{det} A<0$
d) $\operatorname{det} A \neq 0$.
iii) If the matrix $\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda\end{array}\right]$ is singular then the value of λ is
a) 3
b) 5
c) 2
d) 4 .
iv) If λ is an eigenvalue of A, then λ^{4} is an eigenvalue of
a) $\quad A^{4}$
b) $\quad A^{3}$
c) A
d) none of these.
v) I.F. of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{y}{x+1}=e^{x}(x+1)$ is equal to
a) $(x+1)$
b) $\frac{1}{x+1}$
c) x
d) e^{x+1}.
vi) An equation of the form $y=p x+f(p)$ is known as
a) Leibnitz equation
b) Bernoulli's equation
c) Clairaut's equation
d) none of these.
vii) Δ (forward difference operator) and E (shift operator) is related as
a) $E+\Delta=1$
b) $\frac{E}{\Delta}=1$
c) $E-1=\Delta$
d) $E \Delta=1$.
viii) What is the P.I. of $\frac{\mathrm{d} y}{\mathrm{~d} x}-4 y=e^{2 x}$?

a) $-\frac{1}{2} e^{2 x}$
b) $-e^{2 x}$
c) $2 e^{2 x}$
d) $e^{2 x}$.
ix) When $k>0$ the Bessel function $J_{k}(0)$ is
a) 0
b) 1
c) $\quad \infty$
d) $-\infty$.
x) If $X^{T} A X=\lambda$ where λ is a diagonal matrix comprising the eigenvalues of square matrix A, the matrix A is known as
a) diagonal matrix
b) orthogonal matrix
c) orthonormal matrix
d) self adjoint matrix.
xi) A boundary condition in which the outward normal derivative and the variable is specified on the surface is termed
a) Dirichlet boundary conditions
b) Neumann boundary conditions
c) Robin or mixed boundary conditions
d) Cauchy conditions.
xii) The differential equation $\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}+\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{4}-\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-y=5 e^{x} \cos ^{2} x$ is a
a) 2 nd order 2 nd degree linear differential equation
b) 4th order 1st degree nonlinear differential equation
c) 2 nd order 4th degree linear differential equation
d) 4th order 4th degree linear differential equation.

Answer any three of the following
2. Solve the following system of equations by matrix method :

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned}
$$

3. Solve : $x y-\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{4} \exp \left(\frac{-3 x^{2}}{2}\right)$
4. Solve : $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}-6 y=4 x^{3}+3 x^{2}$
5. A rectangular block of metal is subject to temperature variation in all directions, but the surface at $x=0$ is thermally insulated. Express this condition by an equation.
6. Find the thermal conductivity of propane at $1.013 \times 10^{4} \mathrm{kN} / \mathrm{m}^{2}$ and $99^{\circ} \mathrm{C}$ from the following data :

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Thermal Conductivity $(\mathrm{W} / \mathrm{m}-\mathrm{K})$
68	9.7981×10^{3}	0.0848
	13.324×10^{3}	0.0897
87	9.0078×10^{3}	0.0762
	13.335×10^{3}	0.0807
106	9.7981×10^{3}	0.0696
	14.277×10^{3}	0.0753
140	9.6563×10^{3}	0.0611
	12.463×10^{3}	0.0651

Answer any three of the following.
$3 \times 15=45$
7. The figure below illustrates a distillation apparatus consisting of a boiler B with a constant level device C, fed with the condenser cooling water. The steam is condensed in A and collected in receiver D. Some of the latent heat of evaporation is returned to the boiler by preheating the feed. Denoting the condenser feed rate by $F \mathrm{~kg} / \mathrm{s}$, and temperature by $T^{\circ} \mathrm{C}$, the excess water overflow rate by $W \mathrm{~kg} / \mathrm{s}$ and the distillation rate by $G \mathrm{~kg} / \mathrm{s}$, calculate the value of G. From the expression of G, find the limiting value of F for which G becomes infinite and hence obtain the restriction on the value of F. Can the values of G and rate of collection of distillate D be different ? If so, obtain the complete solution for the rate of distillate collection.

Fig. Water still with heat exchanger
8. An elevated horizontal cylindrical tank 1 m diameterand 2 m long is insulated with asbestos lagging of thicinness $1=4 \mathrm{~cm}$ and is employed for a batch chemical process. Liquid at $100^{\circ} \mathrm{C}$ is charged into the tank and allowed to mature over 5 hrs . Calculate the final temperature of the liquid. The following data is available :

Liquid film coefficient of heat transfer is $140 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$

Thermal conductivity of asbestos (k) is $0.3 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
Surface coefficient of heat transfer by convection and radiation $\left(h_{2}\right)$ is $10 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$.

Density of liquid is $1000 \mathrm{~kg} / \mathrm{m}^{3}$

Heat capacity of liquid is $2500 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$

The atmospheric temperature is assumed to vary according to relation $t=10+10 \cos (\pi \theta / 24)$, where θ is time in hours.

The atmospheric temperature at the time of charging is $10^{\circ} \mathrm{C}$. Heat loss through the supports and thermal capacity of the lagging can be neglected.
9. a) The apparatus shown in figure is to be used for the continuous extraction of benzoic acid from toluene, using water as the extracting solvent. Here two stages are used. Each stage consists of two tanks, a mixer \& a settler, with counter current flow through the stages. Find out what proportion of benzoic acid has passed into the solvent phase.

b) For the following reaction between A and B $a A+b B \rightarrow p P$, derive the following reaction to relate x, i.e. the moles of P formed as a function of time.
$x=\frac{m n p t k}{m b k t+p}$
where, m and n are the moles of the reactants A and B taken initially such that, $\frac{m}{n}=\frac{a}{b}$ and k is the rate constant. Assume that the rate of formation of P is proportional to the product of the concentrations of A and B.

$$
9+6
$$

CS/B.TECH(CHE)/SEM-7/CHE-701/2011-12
10. Two concentric cylindrical metallic shells are separated by a solid material. If the two metal surfaces are maintained at different constant temperature (Temperature at centre is T_{0} and temperature at outermost cylinder is T_{1}), what is the steady state temperature distribution within the separating material at any radial distance r from the centre ?
11. $G_{N+1} \mathrm{~kg}$ moles/h of a wet gas containing $Y_{N+1} \mathrm{~kg}$ moles/mole of solute are fed into the base of plate absorption column where the solute is to be stripped from the gas by absorption in $L_{0} \mathrm{~kg}$ moles $/ \mathrm{h}$ of lean oil which is fed into the top of the column. If the solute in the entering oil is $X_{0} \mathrm{~kg}$ moles/mole of lean oil and the solute in the exit gas is $Y_{1} \mathrm{~kg}$ moles of solute/moles of wet gas, show that the performance of the absorber can be expressed in terms of the absorption factor $A=\left(L_{0} / K G_{N+1}\right)$ and the number of ideal stages by the Kremser-Brown equation

$$
\frac{Y_{N+1}-Y_{1}}{Y_{N+1}-Y_{0}}=\frac{A^{N+1}-A}{A^{N+1}-1}
$$

where K is the equilibrium constant.

