Name :	
Roll No. :	An Advance (W.Converticity 2nd Excellent)
Invigilator's Signature :	

CS/B.TECH(CHE)/SEM-7/CHE-701/2011-12

2011

MATHEMATICAL METHODS IN CHEMICAL ENGINEERING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) If A is a n^{th} order square matrix then det (5A) is

a) $5 [\det(A)]^n$ b) $5 \det(A)$

- c) $5^{n} [\det(A)]^{n}$ d) $5^{n} \det(A)$.
- ii) The solution of a system of n linear equations with n unknowns is unique if and only if
 - a) det A = 0 b) det A > 0
 - c) det A < 0 d) det $A \neq 0$.

7006

- c) Robin or mixed boundary conditions
- d) Cauchy conditions.
- xii) The differential equation

$$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} + \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^4 - \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - y = 5e^x \cos^2 x \text{ is a}$$

- a) 2nd order 2nd degree linear differential equation
- b) 4th order 1st degree nonlinear differential equation
- c) 2nd order 4th degree linear differential equation
- d) 4th order 4th degree linear differential equation.

7006

CS/B.TECH(CHE)/SEM-7/CHE-701/2011-12

Answer any three of the following

GROUP – B

2. Solve the following system of equations by matrix method : 3x + y + 2z = 3

2x - 3y - z = -3x + 2y + z = 4

3. Solve :
$$xy - \frac{dy}{dx} = y^4 \exp\left(\frac{-3x^2}{2}\right)$$

4. Solve :
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 4x^3 + 3x^2$$

- A rectangular block of metal is subject to temperature 5. variation in all directions, but the surface at x = 0 is thermally insulated. Express this condition by an equation.
- Find thermal conductivity of 6. the propane at 1.013×10^4 kN/m² and 99°C from the following data :

Temperature (°C)	Pressure (kN/ m ²)	Thermal Conductivity (W/m-K)
68	9.7981×10^3	0.0848
	$13 \cdot 324 \times 10^3$	0.0897
87	$9\cdot0078\!\times\!10^3$	0.0762
	$13 \cdot 335 \times 10^3$	0.0807
106	$9\cdot7981\!\times\!10^3$	0.0696
	$14\cdot 277 \times 10^3$	0.0753
140	$9\cdot 6563\!\times\!10^3$	0.0611
140	$12\cdot463\!\times\!10^3$	0.0651

7006

Answer any *three* of the following. $3 \times 15 = 45$

7. The figure below illustrates a distillation apparatus consisting of a boiler B with a constant level device C, fed with the condenser cooling water. The steam is condensed in A and collected in receiver D. Some of the latent heat of evaporation is returned to the boiler by preheating the feed. Denoting the condenser feed rate by F kg/s, and temperature by $T^{\circ}C$, the excess water overflow rate by W kg/s and the distillation rate by G kg/s, calculate the value of G. From the expression of G, find the limiting value of F for which G becomes infinite and hence obtain the restriction on the value of F. Can the values of G and rate of collection of distillate D be different ? If so, obtain the complete solution for the rate of distillate collection.

Fig. Water still with heat exchanger

8. An elevated horizontal cylindrical tank 1 m diameter and 2 m long is insulated with asbestos lagging of thickness 1 = 4 cm and is employed for a batch chemical process. Liquid at 100°C is charged into the tank and allowed to mature over 5 hrs. Calculate the final temperature of the liquid. The following data is available :

Liquid film coefficient of heat transfer is 140 W/m^2 °C

Thermal conductivity of asbestos (k) is 0.3 W/m °C

Surface coefficient of heat transfer by convection and radiation (h_2) is 10 W/m² °C.

Density of liquid is 1000 kg/m³

Heat capacity of liquid is 2500 J/kg °C

The atmospheric temperature is assumed to vary according to relation $t = 10 + 10 \cos(\pi\theta/24)$, where θ is time in hours.

The atmospheric temperature at the time of charging is 10°C. Heat loss through the supports and thermal capacity of the lagging can be neglected.

b) For the following reaction between A and B $aA + bB \rightarrow pP$, derive the following reaction to relate x, *i.e.* the moles of P formed as a function of time.

$$x = \frac{mnptk}{mbkt + p}$$

where, *m* and *n* are the moles of the reactants *A* and *B* taken initially such that, $\frac{m}{n} = \frac{a}{b}$ and *k* is the rate constant. Assume that the rate of formation of *P* is proportional to the product of the concentrations of *A* and *B*. 9+6

7006

- 10. Two concentric cylindrical metallic shells are separated by a solid material. If the two metal surfaces are maintained at different constant temperature (Temperature at centre is T_0 and temperature at outermost cylinder is T_1), what is the steady state temperature distribution within the separating material at any radial distance r from the centre ?
- 11. G_{N+1} kg moles/h of a wet gas containing Y_{N+1} kg moles/mole of solute are fed into the base of plate absorption column where the solute is to be stripped from the gas by absorption in L_0 kg moles/h of lean oil which is fed into the top of the column. If the solute in the entering oil is X_0 kg moles/mole of lean oil and the solute in the exit gas is Y_1 kg moles of solute/moles of wet gas, show that the performance of the absorber can be expressed in terms of the absorption factor $A = (L_0 / KG_{N+1})$ and the number of ideal stages by the Kremser-Brown equation

$$\frac{Y_{N+1}-Y_1}{Y_{N+1}-Y_0}=\frac{A^{N+1}-A}{A^{N+1}-1}$$

where *K* is the equilibrium constant.

7006
