

II Semester M.C.A. Examination, July 2017 (CBCS) COMPUTER SCIENCE MCA – 201T : Data Structures

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Part – A: Answer any five questions. (5×6=30) 2) Part – B: Answer any four questions. (4×10=40)

PART-A

A. Answer any five. Each question carries six marks.

6×5=30)

- 1) a) Why do we need data structures? Mention data structure classification.
 - b) What is the best time and worst time complexity of linear search?
- 2) Insert {7, 3, 2, 4, 6, 0} into a linear queue of size 4.
- Differentiate between Depth First Search (DFS) and Breadth First Search (BFS) with an example.
- 4) What is polish expression? Convert the following infix expression into postfix expression:

$$f^*(g + (a + b/c))^*e + d$$

- 5) Write a code for concatenating two strings without using inbuilt function.
- 6) Write an algorithm for selection sort with its time complexity.
- 7) What are applications of the following data structures?
 - a) Stack
 - b) Linked list.
- 8) a) What is typedef and why do we use?
 - b) Write a recursive algorithm to solve tower of Hanoi with 3 discs.

PART-B

B. Answer any four. Each question carries ten marks.

 $(4 \times 10 = 40)$

- 9) a) Brief on the concept of time and space complexity.
 - b) Write a program to convert infix to postfix expression.
- Why is binary search better than linear search? Explain binary search technique with the help of an algorithm.
 - b) What is abstract data type?
- 11) Explain stack and queue operation in detail. Write algorithms for the same.
- 12) Explain the concept of singly linked list by creating node, inserting node and displaying nodes with the help of programming.
- 13) With necessary algorithm, sort the following using merge sort : {42, 23, 74, 11, 65, 57, 94, 36, 99, 87, 70}
- 14) Write short notes on:
 - a) Binary search tree insertion and deletion operation.
 - b) Define: Binary tree, complete graph and directed graph.

Max. Marks: 70

 $(5 \times 6 = 30)$

II Semester M.C.A. Examination, June 2016 (CBCS) COMPUTER SCIENCE MCA – 201 T : Data Structures

Time: 3 Hours

PART-A

Answer any five questions.

- 1. What are Asymptotic notations? Explain.
- 2. Define data structure and explain various operations on data structures.
- 3. Explain with an algorithm traversal of linear arrays.
- 4. Sort the given elements using bubble sort: 99, 88, 77, 66, 55, 44, 33, 22.
- 5. Explain the insertion and deletion operations in a Singly linked list.
- 6. Convert the given infix expression into its postfix form : $A/(B*C) + D*E A^C$.
- 7. Write a recursive function to calculate Fibonacci series.
- 8. Give the algorithm for DFS.

PART-B

Ar	nsw	(4×10=40)	
9.	a)	Explain Boyer-Moore string pattern matching algorithm.	6
	b)	What are Abstract data types ?	4
10.	a)	Explain Binary search technique with the algorithm.	6
	b)	Explain sparse matrices.	4
			P.T.O.

PG -	- 498	
11. F	Explain types of Linked lists with examples.	10
12. 8	a) Differentiate between circular queue and double ended queue.	4
t	b) Explain push and pop operations on stack.	6
13. \	With relevant functions explain tree traversal techniques.	10
14. \	Write short notes on :	
	a) Heap Sort.	6
J	b) Applications of Stacks.	4

II Semester M.C.A. Examination, June 2015 (CBCS) MCA - 201T : DATA STRUCTURES

Time: 3 Hours

Max. Marks: 70

PART-A

Answer any five questions:

(5×6=30)

- 1. What is recursion? What are the various types of recursion? Explain with an example.
- 2. What do you mean by asymptotic behaviour of a function? What are the different types of asymptotic notations?
- 3. Write an algorithm to sort 'n' numbers using selection sort.
- 4. What is a sparse matrix? Design an algorithm to search an item in sparse matrix.
- 5. What is ADT Stack? Write an algorithm to convert expression from infix notation to postfix notation.
- 6. What is a weighted graph? Write the adjacency matrix for the following graph:

- 7. What is a priority queue ? Explain operations and applications of queues.
- 8. What is a binary search tree ? What are the different types of binary search trees ? Explain.

5

5

5

10

PART-B

FARI-B						
An	swe	er any four questions: (4×10=4	0)			
9.	×	Write an algorithm to illustrate Bubble Sort. Write the time complexity. Write a recursive program to find the factorial of 'n'.	5 5			
10.		Illustrate the concept of circular queue. Obtain the prefix expression for $((a + (b - c) * d) ^e + f)$.	5 5			
11.	157.	List out differences between singly linked list and doubly linked list. Write an algorithm to concatenate two lists into a single list.	5 5			
12.	a)	What is tree traversing? What is pre-order traversing for the following tree:	5			
		B				

- b) Given a doubly linked list with elements {5, 6, 9, 10, 12} 5 being the first element, and 12 being the last element, write an algorithm to insert element in the doubly linked list and show the proof for inserting an element between 6 and 9.
- 13. a) Sort {6, 9, 4, 3, 7, 5} using minimum heap, heap sort algorithm.
 - b) Write a function to insert an item into a binary search tree.
- 14. Write short notes on:
 - i) Warshall's Algorithm
 - ii) Row major representation of a matrix.