
Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 1

Compiler Design

Theme of the subject -“How to design and implement efficient compilers“.

We will learn various techniques for implementing the compilers. Efficient compilers assist us to

develop software quickly and correctly, meeting all the specified requirements.

UNIT – 1
Introduction: Language Processors, the structure of a compiler, the science of building a compiler,

programming language basics.

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-

Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-

Analyzer Generator, Optimization of DFA-Based Pattern Matchers.

1.1 Language Processors or Language Translators:
The world as we know it depends on programming languages, because all the software running on all

the computers was written in some programming language. Before a program can be run, it must be

translated into a form, which can be executed by a computer. The software systems that do this

translation is called Compiler. Any software which converts one programming language into another

programming language is called as Language Translator.

Compiler: -A compiler is a program which takes a program written in a source language and

translates it into an equivalent program in a target language. An important role of the compiler is to

report any errors in the source program that it detects during the translation process.

Fig 1.1: Compiler

If the Target Program is an executable machine language program, it can then be called by the user to

process input and produce output.

Fig 1.2: Executing the target program

Interpreter:-An interpreter is another common kind of language processor. Instead of producing a

target program it directly executes the operations specified in the source program on inputs supplied

by the user.

Fig 1.3: Interpreter

 Note:

 The machine language target program produced by compiler is much faster than an

interpreter at mapping input to output.

 An interpreter gives better error diagnostics than compiler, because it executes the source

program statement-by-statement.

Java language processors use both compilation and interpretation shown in figure 1.4. A java

program is first compiled to produce intermediate form called bytecode. The bytecode is then

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 2

interpreted by a virtual machine. The main advantage of this arrangement is that it supports cross

platform execution. In order to achieve faster processing of inputs to outputs, JIT (Just in time)

compiler is used. It translates bytecode into machine code immediately before running the

intermediate program to process the input.

Fig 1.4: Hybrid Compiler

Preprocessor: - A preprocessor is a program that processes its input data (i.e. source program) to

produce output (i.e. modified source program) that is used as input to the compiler. The preprocessor

expand shorthand’s, called macros, into source language statements.

Assembler: If the source program is assembly language and the target language is machine language

then the translator is called an assembler.

Fig 1.5: Assembler

The assembly language is then processed by a program called on Assembler that produces relocatable

machine code as its output.

Reloacatable machine code means that it can be loaded starting at any location L in memory; i.e., if L

is added to all addresses in the code, then all references will be correct.

Linker: Resolves external memory addresses, where the code in one file may refer to a location in

another file. It links the relocatable object file with the system wide startup object file and makes an

executable file.

Loader: The loader puts together all of the executable object files into memory for execution. It loads

the executable code into the memory for execution. The process of loading takes relocatable machine

code, alter the relocatable addresses and place the altered instructions and data in memory at the

proper locations.

1.2 Language Processing System
The preprocessor may also expand shorthand’s, called macros, into source language statements. The

modified source program is then fed to a compiler. The compiler may produce an assembly-language

program as its output, because assembly language is easier to produce as output and is easier to

debug. The assembly language is then processed by a program called an assembler that produces

relocatable machine code as its output.

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 3

Fig 1.6: Language Processing System

Large programs are often compiled in pieces, so the relocatable machine code may have to be linked

together with other relocatable object files and library files into the code that actually runs on the

machine. The linker resolves external memory addresses, where the code in one file may refer to a

location in another file. The loader then puts together the entire executable object files into memory

for execution.

1.3 The Structure of a Compiler
A compiler maps a source program into semantically equivalent target program. There are two parts

to this mapping Analysis and Synthesis.

(or)

The compilation process can be subdivided into main parts. They are

1. Analysis and 2. Synthesis

Analysis phase: -The analysis part is often called the front end of the compiler. In analysis phase, an

intermediate representation is created from the given source program. Lexical Analyzer, Syntax

Analyzer, Semantic Analyzer and Intermediate Code Generator are the parts of this phase. It breaks

up the source program and checks whether the source program is either syntactically or semantically

correct. It provides informative error messages, so that the user can take corrective action. The

analysis part also collects information about the source program and stores it in a data structure

called a symbol table, which is passed along with the intermediate representation to the synthesis

part.

Fig 1.7: Parts of Compiler

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 4

Synthesis phase: - The synthesis part constructs the desired target program from the intermediate

representation and the information in the symbol table. Code Generator and Code Optimizer are the

parts of this phase. The synthesis part is the back end of the compiler. The backend deals with

machine-specific details like allocation of registers, number of allowable operators and so on.

P1.C

Intermediate Code

Target Code

Fig 1.8: Front end and Back end of Compiler

The above fig. shows the two stage design approach of a compiler using C language source File as

input.

The main advantages of having this two stage design are as follows:

i. The compiler can be extended to support an additional processor by adding the required back

end of the compiler. The existing front end is completely re-used in this case. This is shown in

fig below.

Source Program

Fig.1.9. Supporting an additional processor by adding back end.

ii. The compiler can be easily extended to support an additional input source language by adding

required front end. In this case, the back end is completely re-used. This is shown in fig below.

Front End

Back End

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 5

Fig.1.10: Supporting an additional Languages by adding front end.

1.4 Phases of a Compiler
The compilation process operates as a sequence of phases. Each phase transforms the source

program from one representation into another representation. A compiler is decomposed into phases

as shown in Fig. The symbol table, which stores information about the entire source program, is used

by all phases of the compiler. During Compilation process, each phase can encounter errors. The error

handler is a data structure that reports the presence of errors clearly and accurately. It specifies how

the errors can be recovered quickly to detect subsequent errors.

Lexical Analyzer: -The first phase of a compiler is called lexical analysis or scanning. The lexical

analyzer reads the source program and groups the characters into meaningful sequences called

lexemes (i.e tokens). For each lexeme, the lexical analyzer produces output in the form

<token-name, attribute-value>

That is passed to the next phase. In token the first component token name is an abstract symbol that

is used during syntax analysis, and the second component attribute-value points to an entry in the

symbol table for this token. Information from the symbol-table entry is needed for semantic analysis

and code generator.

Example: suppose a source program contains the assignment statement

Position = initial + rate * 60

The characters in this assignment could be grouped into the following lexemes and mapped into the

following tokens passed on to the syntax analyzer:

 Position is a lexeme that would be mapped into a token <id, 1>, where idis an abstract

symbol standing for identifier and 1 points to the symbol table entry for Position. The

symbol-table entry for an identifier holds information about the identifier, such as its name

and type.

 The assignment symbol = is a lexeme that is mapped into the token < = >. Since this token

needs no attribute-value, we have omitted the second component. We could have used any

abstract symbol such as assign for the token-name, but for notational convenience we have

chosen to use the lexeme itself as the name of the abstract symbol.

 initialis a lexeme that is mapped into the token <id, 2>, where 2 points to the symbol-table

entry for initial .

 + is a lexeme that is mapped into the token < + >.

 rate is a lexeme that is mapped into the token <id, 3>, where 3 points to the symbol-table

entry for rate .

 * is a lexeme that is mapped into the token <*>.

 60 is a lexeme that is mapped into the token <60>.

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 6

After lexical analysis the assignment statement can be represented as a sequence of tokens as follows:

<id , l >< = ><id, 2><+><id, 3><*><60>

Blanks separating the lexemes would be discarded by the lexical analyzer.

Syntax Analyzer: -The second phase of the compiler is syntax analysis or parsing. A component that

performs parsing is called syntax analyzer or parser. The parser uses the tokens produced by the

lexical analyzer to create a syntax tree. In syntax tree, each interior node represents an operation and

the children of the node represent the arguments of the operation.

A syntax tree for the token stream is shown as the output of syntax analyzer.

The tree below shows the order in which the operations in assignment are to be performed.

Position=initial + rate * 60

Fig.1.11: Syntax Tree

Semantic Analyzer:- The semantic analyzer uses the syntax tree and the information in the

symbol table to check the source program for semantic errors. It also gathers type information and

saves it in either the syntax tree or the symbol table, for subsequent use during intermediate-code

generation. An important part of semantic analysis is type checking, where the compiler checks

that each operator has matching operands. Some language allows type conversion called coercion.

In our assignment statement the type checker converts integer value into floating point number.

The output of the semantic analyzer has an extra node for operator inttofloat which explicitly

converts its integer argument into a floating point number.

Fig.1.12: Syntax Tree obtained from semantic analyzer

Intermediate Code Generator: - In the process of translating a source program into target code, a

compiler may construct one or more intermediate representations, which can have a variety of forms.

Syntax trees are a form of intermediate representation; they are commonly used during syntax and

semantic analysis. After syntax and semantic analysis of the source program, many compilers

generate an intermediate representation. This intermediate representation should have two

important properties:

 It should be easy to produce and

 It should be easy to translate into the target code.

One form of intermediate code is three-address code, which consists of a sequence of assembly-like

instructions with atmost three operands per instruction.

The output of Intermediate code generator for our assignment statement consists of Three-address

code sequence as follows.

t1 = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

id1 = t3

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 7

Code Optimization: -The code-optimization phase is used to produce efficient target code. The target

code generated must be executed faster and must consume less power.

Code optimization can also be performed on intermediate code.

 The optimization which is performed on intermediate code is called machine independent

code optimization.

 The optimization which is performed on target code is called machine dependent code

optimization.

Example:

Code Generator: -The code generator takes intermediate representation of the source program and

coverts into the target code. If the target language is machine code, registers or memory locations are

selected for each of the variables used by the program. Then, the intermediate instructions are

translated into sequences of machine instructions that perform the same task.

Symbol Table: -The symbol table is a data structure containing a record for each variable name, with

fields for the attributes of the name. The data structure should be designed to allow the compiler to

find the record for each name quickly and to store or retrieve data from that record quickly.

Error Handler: - Error handler should report the presence of an error. It must report the place in the

source program where an error is detected. Common programming errors can occur at many

different levels.

 Lexical errors include misspellings of identifiers, keywords, or operators.

 Syntax errors include misplaced semicolons or extra or missing braces.

 Semantic errors include type mismatches between operators and operands.

 Logical errors can be anything from incorrect reasoning on the part of the programmer to the

use in a C program of the assignment operator = instead of the comparison operator ==.

The main goal of error handler is

1. Report the presence of errors clearly and accurately.

2. Recover from each error quickly enough to detect subsequent errors.

3. Add minimal overhead to the processing of correct programs.

t1 = id3 * 60.0

id1 = id2 + t1

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 8

Fig.1.13: - Phases of a compiler

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 9

Example: - Compile the statement position = initial + rate * 60

Fig.1.14: - Output of each phase of compiler

1.5.Pass and Phase
Phases deals with the logical organization of a compiler. In an implementation, activities from several

phases may be grouped together into a pass that reads an input file and writes an output file. For

example, the front-end phases of lexical analysis, syntax analysis, semantic analysis, and intermediate

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 10

code generation might be grouped together into one pass. Code optimization might be an optional

pass. Then there could be a back-end pass consisting of code generation for a particular target

machine.

Multi-pass Compilation requires more memory since we need to store the output of each phase in

totality. Multi-pass compiler also takes a longer time to compile since it involves reading of the input

in different forms (tokens, parse tree, etc) multiple number of times.

In practice, Compilers are designed with the idea of keeping the number of passes as minimum as

possible. The number of passes required in a compiler to process an input source program depends

on the structure of programming language. C language compilers can be implemented in a single pass,

while ALGOL-68 compilers cannot be implemented in a single pass.

Comparison between Interpreter and Compiler.
S.NO INTERPRETER COMPILER

1. An interpreter is a program which translates

each statement of the source program and

executes the machine code of that statement.

A Compiler is a program which translates the

entire source program and generates the

machine code of the source program.

2. Executing the programs using interpreter is

slower.

Executing the programs using compiler is

faster.

3. The source program gets interpreted every

time it is to be executed. Hence

interpretation is less efficient than

compilation.

The source program gets compiled once and

the object code of it is stored on the hard disk.

It can be used every time the program is to be

executed.

4. Developing interpreter is an easier task. Developing compiler is a complicated task and

is difficult.

5. Interpreter is simpler and they require less

amount of memory.

Compiler is a complex program and it requires

large amount of memory.

1.6. The Science of building Compiler

A compiler is a large program which translates high level language into an equivalent machine code. A

compiler must accept all source programs that conform to the specification of the language; the set of

source programs is infinite and any program can be very large, consisting of possibly millions of lines

of code. Any transformation performed by the compiler while translating a source program must

preserve the meaning of the program being compiled.

i) Modeling in compiler design and implementation

Implementation of compiler involves the design of right mathematical models and selection of right

algorithms. Some of most fundamental models are finite-state machines and regular expressions.

These models are useful for describing the lexical units of programs (keywords, identifiers, and such)

and for describing the algorithms used by the compiler to recognize those units. Also among the most

fundamental models are context-free grammars, used to describe the syntactic structure of

programming languages.

ii) The Science of Code Optimization

Code Optimization- It is a program transformation technique which improves the code such that the

resultant target code will get execute faster by consuming less resource.

The optimization technique should not influence the semantics of the input source program. There

are number of code optimization techniques that can be applied for developing the efficient

compilers. Code optimization schemes must meet the following design objectives.

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 11

Compiler optimization must meet the following design objectives:

 Optimization must preserve the meaning of the compiled program.

 Optimization must improve the performance.

 Compilation time must be kept minimum.

 The engineering effort required must be manageable.

There are an infinite number of program optimizations that we could implement, and it takes a

nontrivial amount of effort to create a correct and effective optimization. We must prioritize the

optimizations and implement only those that lead to the better performance of the code.

1.7. Programming Language Basics

i) Static scope and dynamic scope

Scope refers to a place in a program where a variable is visible and can be referenced.

The scope of a declaration of x is the region of the program in which uses of x refer to this

declaration.

A language uses static scope or lexical scope if it is possible to determine the scope of a

declaration by looking only at the program. Otherwise, the language uses dynamic scope.

With dynamic scope, as the program runs, the same use of x could refer to any of several

different declarations of x.

Example: public static int x;

The above declaration makes x a class variable and says that there is only one copy of x,

no matter how many objects of this class are created. Moreover, the compiler can

determine allocation in memory where this integer x will be held. If “static" is omitted

from this declaration, then each object of the class would have its own location where x

would be held, and the compiler could not determine all these places in advance of

running the program.

ii) Environments and State

The environment is a mapping from names to locations in memory. Since variables refer to

locations ("l-values" in the terminology of C), we could alternatively define an

environment as a mapping from names to variables. The state is a mapping from locations

in store to their values. That is, the state maps l-values to their corresponding r-values, in

the terminology ofC. Environments change according to the scope rules of a language.

Fig.1.15: Two-Stage mappings from names to values

 Binding of names to locations is dynamic.

 The binding of locations to values is dynamic, since we cannot determine the value

in a location until we run the program.

iii) Static Scope and Block Structure

Most languages, including C and its family, use static scope. Later languages, such as C++,

Java, and C#, also provide explicit control over scopes through the use of keywords like

public, private, and protected. In section explains static-scope rules for a language with

blocks. A block is a grouping of declarations and statements. C uses braces { and} to

delimit a block; Algol uses begin and end for the same purpose.

We say that a declaration D “belongs" to a block B if B is the most closely nested block

containing D; that is, D is located within B, but not within any block that is nested within

B.

The static-scope rule for variable declarations in block-structured languages is as follows.

If declaration D of name x belongs to block B, then the scope of D is all of B, except for any

blocks B’ nested to any depth within B, in which x is redeclared. Here, x is redeclared in B’
if some other declaration D’ of the same name x belongs to B’

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 12

.

 Consider the declaration int a = 1in block B1. Its scope is all of B1, except for those blocks

 nested (perhaps deeply) within B1 that have their own declaration of a. B2, nested

 immediately within B1, does not have a declaration of a, but B3 does. B4 does not have a

 declaration of a, so block B3 is the only place in the entire program that is outside the scope of

 the declaration of the name a that belongs to B1. That is, this scope includes B4 and all of B2

 except for the part of B2 that is within B3.

Table 1.1: Scopes of declaration for above example

iv) Explicit Access Control

Classes and structures introduce a new scope for their members. If p is an object of a class

with a member x, then the use of x in p.x refers to field x in the class definition. The scope

of a member declaration x in a class C extends to any subclass C’, except if C’ has a local

declaration of the same name x.

The usage of keywords like public, private, and protected, object-oriented languages such

as C++ or Java provide explicit control over access to member names in a super class.

These keywords support encapsulation by restricting access.

The private names are purposely given a scope that includes only the method declarations

and definitions associated with that class and any “friend" classes (the C++ term).

Protected names are accessible to subclasses. Public names are accessible from outside

the class.

v) Dynamic Scope

The term dynamic scope, usually refers to the following policy: a use of a name x refers to

the declaration of x in the most recently called, not-yet-terminated, procedure with such a

declaration. Dynamic scoping of this type appears only in special situations. We shall

consider two examples of dynamic policies: macro expansion in the C preprocessor and

method resolution in object oriented programming.

vi) Parameter Passing Mechanisms

There are two types of parameters actual parameters (the parameters used in the call of a

procedure)are associated with the formal parameters (those used in the procedure

definition). The most common parameter passing mechanisms are:

Compiler Design (R-19) UNIT – I (PART – I)

Dr.MDS, Dept. of I.T., KHIT 13

a) Call by Value

In this parameter passing mechanism, the changes made to formal parameters will not be

reflected on the actual parameters because both actual and formal parameters have

separate storage locations.

b) Call by reference

In this parameter passing mechanism, the changes made to formal parameters will be

reflected on the actual parameters because formal parameters references the storage

locations of actual parameters. Hence, the any change made on formal parameter will be

reflected on actual parameter.

c) Call by Name

This technique was used in early programming language such as Algol. In this technique,

symbolic “name” of a variable is passed, which allows it both to be accessed and update.. It

requires that the callee execute as if the actual parameter were substituted literally for the

formal parameter in the code of the callee.

Consider the example below:

procedure double(x);

 real x;

begin

x:=x*2

end;

In general, the effect of pass-by-name is to substitute the argument expression in a

procedure call for the corresponding parameters in the body of the procedure, e.g.

double(c[j]) is interpreted as c[j]:=c[j]*2.

vii) Aliasing

It is possible that two formal parameters can refer to the same location; such variables are

said to be aliases of one another. Suppose a is an array belonging to a procedure p, and p

calls another procedure q(x,y) with a call q(a,a). Now, x and y have become aliases of each

other.

************Important Questions************

1. Define language processor? Differentiate between Compiler and Interpreter.

2. Explain in detail about various Phases of Compiler.

(Or)

Explain the different Phases of a Compiler, showing the output of each phase for the

statement “position=initial+rate*60”.

ii) x=(a+b)*(c+d)

iii) Fahrenheit=Celsius*1.8+32

3. Differentiate between Pass and Phase.

4. Explain about Language Processing System.

5. Define Loader, Linker and Assembler. Explain the structure of a Compiler & its advantages.

6. Describe various parameter passing techniques.

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 14

Lexical Analysis – Role of Lexical Analysis – Lexical Analysis Vs Parsing – Token, patterns and

Lexemes – Input Buffering - Lexical Errors - Regular Expressions – Regular definitions

Recognition of Tokens- Lexical Analyzer Generator (LEX Tool).

1. Introduction:

In this chapter we will discuss how to construct a lexical analyzer.
There are three ways to implement Lexical Analyzer:
i) Using State Transition diagrams to recognize various tokens.
ii) We can write a code to identify each occurrences of each lexeme on the input and to return

information about the token identified.
iii) We can also produce a lexical analyzer automatically by specifying the lexeme patterns to a

lexical analyzer generator and compiling those patterns into code that functions as lexical
analyzer. This approach makes it easier to modify a lexical analyzer, since we have only to
rewrite the affected patters, not the entire program. Lexical analyzer generator called LEX.

Lexical Analysis: - The first phase of a compiler is called lexical analysis or scanning. The lexical
analyzer reads the source program and groups the characters into meaningful sequences called
lexemes. It identifies the category (i.e tokens) to which this lexeme belongs. For each lexeme, the
lexical analyzer produces output in the form
 <token-name, attribute-value>
 This output is passed to the subsequent phase i.e syntax analysis.
2. Role of the Lexical Analyzer

Lexical analyzer is the first phase of a compiler. The main task of the lexical analyzer is to read the
input characters of the source program, group them into lexemes, and produce tokens for each
lexeme in the source program. The stream of tokens is sent to the parser for syntax analysis.
When lexical analyzer discovers a lexeme constituting an identifier, it interacts with the symbol
table to enter that lexeme into the symbol table. Commonly, the interaction is implemented by
having the parser call the lexical analyzer. The getNextToken command given by the parser,
causes the lexical analyzer to read characters from its input until it can identify the next lexeme
and produce the next token, which it returns to the parser.

Fig. 1.2.1: Role of lexical analyzer.

Since the lexical analyzer is the part of the compiler that reads the source text, it may perform certain
other tasks besides identification of lexemes. These tasks are as follows:

 Stripping out comments and whitespaces.

 Correlating error messages generated by the compiler with the source program. For instance,
the lexical analyzer may keep track of the number of newline characters seen, so it can
associate a line number with each error message. In some compilers, the lexical analyzer
makes a copy of the source program with the error messages inserted at the appropriate
positions.

 If the source program uses a macro-preprocessor, the expansion of macros may also be
performed by the lexical analyzer.

Sometimes, lexical analyzers are divided into two processes:

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 15

a. Scanning consists of the simple processes that perform such as deletion of comments and
eliminating excessive whitespace characters into one.

b. Lexical analysis is the more complex portion, which produces the sequence of tokens as
output.

3. Lexical Analysis Vs. Parsing
There are a number of reasons for separating Lexical Analysis and Parsing.
i) To simplify the overall design of the compiler.
ii) Compiler efficiency is improved. A separate lexical analyzer allows us to apply specialized

techniques that serve only the lexical task, not the job of parsing. In addition, specialized
buffering techniques for reading input characters can speed up the compiler significantly.

iii) Compiler portability is enhanced.
4. Token, patterns and Lexemes: -

 A token is a sequence of characters having a collective meaning.
A token is a pair consisting of a token name and an optional attribute value. The token name
is the category of lexical unit, e.g., a particular keyword, or a sequence of input characters
denoting an identifier etc.

 A pattern is a description that specify the rules that the lexemes should follow in order to
belong to that token.

 A lexeme is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token.

 Example : printf(“total = %d\n”, score);
 printf and score are lexemes matching the pattern of token ID.

In many programming languages, the following classes cover most or all of the tokens:
i) One token for each keyword. The pattern for a keyword is the same as the keyword itself.
ii) Tokens for the operators, either individually or in classes such as the token comparison

mentioned.
iii) One token representing all identifiers.
iv) One or more tokens representing constants, such as numbers and literal strings.
v) Tokens for each punctuation symbol, such as left and right parentheses, comma, and

semicolon.

5. Input Buffering
To recognize the right lexeme we have to look one or more characters beyond the next lexeme. For
example we cannot be sure that we have seen the end of identifier until we see the character that is
not a letter or digit and therefore not a part of the lexeme id. The input character is read from
secondary storage, but reading in this way from secondary storage is costly. To reduce the input
processing time two buffer scheme is introduced. This scheme has two buffers that are
alternatively reloaded as shown in figure below.

Fig.1.2.2: Using pair of input buffer

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 16

Buffer Pairs (or) Two Buffer Scheme
In this method two buffers are used to store the input string. Each buffer is of the same size N, and N
is usually the size of a disk block, e.g., 4096 bytes. Using one system read command we can read N
characters into buffer, rather than using one system call per character. If fewer than N characters
remain in input file, then eof character is used to mark the end of file.
Two pointers to input are maintained.

i. lexemeBegin pointer marks the beginning of the current lexeme.
ii. Forward pointer scans ahead until a pattern match is found.

Once the next lexeme is determined, forward is set to the character at its right end. Then, after the
lexeme is recognized, an attribute value of a token is returned to the parser, lexemeBegin is set to
the character immediately after the lexeme just found. In fig 1.2.2, we see forward is set to the
character immediately after lexeme just found.
 The first buffer and second buffer are scanned alternately. When end of current buffer is
reached the other buffer is filled. Advancing forward requires that we first test whether we have
reached the end of one of the buffers, and if so, we must reload the other buffer from the input, and
move forward to the beginning of the newly loaded buffer. By using this scheme we must check each
time we advance forward, that we have not moved off one of the buffers: if we do, then we must also
reload the other buffer. Thus, for each character read, we make two tests: one for the end of the
buffer, and one to determine what character is read (the latter may be a multiway branch). We can
combine the buffer-end test with the test for the current character if we extend each buffer to hold a
sentinel character at the end. The sentinel is a special character that cannot be part of the source
program, eof character is considered as sentinel. The usage of sentinels is shown in figure below.
Note that eof retain its use as a marker for the end of the entire input. Any eof that appears other than
at the end of a buffer means that the input is at an end.

Fig.1.2.3: Sentinels at the end of each buffer

6. Lexical Errors
Lexical errors include misspellings of identifiers, keywords, or operators. It is hard for a lexical
analyzer to tell, without the help of other components, that there is a source-code error. For instance,
if the string fi i.e fi() is encountered for the first time in a C program in the context a lexical analyzer
cannot tell whether fi is a misspelling of the keyword if or an undeclared function identifier. Since fi is
a valid lexeme for the token id, the lexical analyzer must return the token id to the parser and the
parser handle an error due to transposition of the letters. However, suppose a situation arises where
the lexical analyzer is unable to proceed because the lexeme doesn’t matches any of the patterns for
tokens. The simplest recovery strategy is "panic mode" recovery. We delete successive characters
from the remaining input, until the lexical analyzer can find a well-formed token at the beginning of
what input is left. This recovery technique may confuse the parser, but in an interactive computing
environment it may be quite adequate. Other possible error-recovery actions are:

i) Delete one character from the remaining input.
ii) Insert a missing character into the remaining input.
iii) Replace a character by another character.
iv) Transpose two adjacent characters.

7. Regular Expressions
A regular expression is a pattern that describes a set of strings.
Regular expressions are used to describe the languages.
The regular expression is the one that matches a single character. For example: ‘s’ matches any input
string where letter s is present like sink, base.
Meta characters in Regular Expression:

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 17

. matches any character except a new line.
^ matches the start of the line.
$ matches end – of- the – line.
[] A character class- matches any letter within the parenthesis. [0123456789] matches 0 or 1 or 2
etc.
[^ abcd] ^ inside the square bracket represents the match of any character except the ones in the
bracket.
| matches either preceding Regular Expression or Succeeding Regular Expression.
() used for grouping Regular Expressions
*,+,? for specifying repetitions in Regular Expressions
* zero or more occurances
+ one or more occurrences
? zero or one occurrences
{ } indicates how many times the previous pattern is matched. Eg. A {1,3} represents a match of
one to three occurrences of ‘a’. The strings that matches are ‘dad’,’daad’,’daaad’ etc.
Regular expressions are an important notation for specifying lexeme patterns. To describe the set of
valid C identifiers use a notation called regular expressions. In this notation, if letter_ is established to
stand for any letter or the underscore, and digit is established to stand for any digit. Then the
identifiers of C language are defined by
 letter (letter| digit)*

The vertical bar above means union, the parentheses are used to group subexpressions, the star
means "zero or more occurrences of". The letter at the beginning indicates that the identifier can
contain any letter at the beginning. The regular expressions are built recursively out of smaller
regular expressions.
The regular expressions are built recursively out of smaller regular expressions, using the rules
described below. Each regular expression r denotes a language L(r), which is also defined recursively
from the languages denoted by r's subexpressions. Here are the rules that define the regular
expressions over some alphabet ∑ and the languages that those expressions denote.
BASIS: There are two rules that form the basis:
1. ∊ (epsilon) is a regular expression, and L(∊) is {∊}, that is, the language whose sole member is the
empty string.
2. If a is a symbol in ∑, then a is a regular expression, and L(a) = {a}, that is, the language with one
string, of length one, with a in its one position.
INDUCTION: There are four parts to the induction whereby larger regular expressions are built from
smaller ones. Suppose r and s are regular expressions denoting languages L(r) and L(s), respectively.
1. (r)|(s) is a regular expression denoting the language L(r) U L(s).
2. (r)(s) is a regular expression denoting the language L(r)L(s).
3. (r)* is a regular expression denoting (L(r))*.
4. (r) is a regular expression denoting L(r).
This last rule says that we can add additional pairs of parentheses around expressions without
changing the language they denote.
As defined, regular expressions often contain unnecessary pairs of parentheses. We may drop certain
pairs of parentheses if we adopt the conventions that:
a) The unary operator * has highest precedence and is left associative.
b) Concatenation has second highest precedence and is left associative.
c) | has lowest precedence and is left associative.
There are a number of algebraic laws for regular expressions; each law asserts that expressions of
two different forms are equivalent. Figure below shows some of the algebraic laws that hold for
arbitrary regular expressions r, s, and t.

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 18

8. Regular definitions
Regular Definitions are names given to certain regular expressions and those names can be used in
subsequent expressions as symbols of the language. If Σ is an alphabet of basic symbols, then a
regular definition is a sequence of definitions of the form:

where
1. Each di is a new symbol, not in Σ and not the same as any other of the di‘s, and
2. Each ri is a regular expression over the alphabet Σ U {dl, d2,. . . , di-l}.
Example 1 : C identifiers are strings of letters, digits, and underscores. Write a regular definition for
the language of C identifiers.

Using shorthand notations, the regular definition can be rewritten as:

Example 2 : Unsigned numbers (integer or floating point) are strings such as 5280, 0.01234, 6.336E4,
or 1.89E-4. Write a regular definition for unsigned numbers in C language.

9. Recognition of Tokens

In the previous section we learned how to express patterns using regular expressions. Now, we study
how to take the patterns for all the needed tokens and build a piece of code that examines the input
string and finds a lexeme matching one of the patterns.
The below example describes a simple form of branching statements and conditional expressions.
This syntax is similar to that of the language Pascal, in that then appears explicitly after conditions.

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 19

The terminals of the grammar, which are if, then, else, relop, id, and number, are the names of
tokens. The patterns for these tokens are described using regular definitions.

For this language, the lexical analyzer will recognize the keywords if, then, and e l s e , as well as
lexemes that match the patterns for relop, id, and number. To simplify matters, we make the common
assumption that keywords are also reserved words: that is, they are not identifiers, even though their
lexemes match the pattern for identifiers.
In addition, we assign the lexical analyzer the job of stripping out whitespace, by recognizing the
"token" ws defined by:

ws (tab|blank space|new line)

Here, blank, tab, and newline are abstract symbols that we use to express the ASCII characters of the
same names. Token ws is different from the other tokens in that, when we recognize it, we do not
return it to the parser, but rather restart the lexical analysis from the character that follows the
whitespace. The table shows, for each lexeme or family of lexemes, which token name is returned to
the parser and what attribute value is returned.

Transition Diagrams

Compiler converts regular-expression patterns to transition diagrams. Transition diagrams have a
collection of nodes or circles, called states. Each state represents a condition that could occur during
the process of scanning the input looking for a lexeme that matches one of several patterns. Edges are
directed from one state of the transition diagram to another. Each edge is labeled by a symbol or set
of symbols. If we are in some state s, and the next input symbol is a, we look for an edge out of state s

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 20

labeled by a (and perhaps by other symbols, as well). If we find such an edge, we enter the state of the
transition diagram to which that edge leads.
Some important conventions about transition diagrams are:
i) Certain states are said to be accepting, or final. These states indicate that a lexeme has been found,

although the actual lexeme may not consist of all positions between the lexemeBegin and
forward pointers.

ii) In addition, if it is necessary to retract the forward pointer one position (i.e., the lexeme does not
include the symbol that got us to the accepting state), then we shall additionally place a * near
that accepting state.

iii) One state is designated the start state, or initial state; it is indicated by an edge, labeled "start,"
entering from nowhere. The transition diagram always begins in the start state before any input
symbols have been read.

Below transition diagram that recognizes the lexemes matching the token relop. We begin in state 0,
the start state. If we see < as the first input symbol, then among the lexemes that match the pattern
for relop we can only be looking at <, <>, or <=. We therefore go to state 1, and look at
the next character. If it is =, then we recognize lexeme <=, enter state 2, and return the token relop
with attribute LE, the symbolic constant representing this particular comparison operator. If in state
1 the next character is >, then instead we have lexeme <>, and enter state 3 to return an indication
that the not-equals operator has been found. On any other character, the lexeme is <, and we enter
state 4 to return that information. Note, however, that state 4 has a * to indicate that we must retract
the input one position. On the other hand, if in state 0 the first character we see is =, then this one
character must be the lexeme. We immediately return that fact from state 5. The remaining
possibility is that the first character is >. Then, we must enter state 6 and decide, on the basis of the
next character, whether the lexeme is >= (if we next see the = sign), or just > (on any other character).

Figure: Transition diagram for relop

10. Recognition of Reserved Words and Identifiers
Recognizing keywords and identifiers presents a problem. Usually, keywords like if or then are
reserved (as they are in our running example), so they are not identifiers even though they look
like identifiers. The below diagram will recognize the keywords if, then, and e l s e of our running
example.

Figure: Transition diagram for identifier

There are two ways that we can handle reserved words that look like identifiers:
i) Install the reserved words in the symbol table initially. A field of the symbol-table entry indicates

that these strings are never ordinary identifiers, and tells which token they represent. When we
find an identifier, a call to installlD places it in the symbol table if it is not already there and
returns a pointer to the symbol-table entry for the lexeme found. Of course, any identifier not in

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 21

the symbol table during lexical analysis cannot be a reserved word, so its token is id. The function
getToken examines the symbol table entry for the lexeme found, and returns whatever token
name the symbol table says this lexeme represents — either id or one of the keyword tokens that
was initially installed in the table.

ii) Create separate transition diagrams for each keyword; an example for the keyword then is shown
in Fig.

Figure: Transition diagram for then

Figure: Transition diagram for unsigned numbers

Figure: Transition diagram for whitespace

11. LEXICAL ANALYZER GENERATOR LEX
Lex is a tool or in a more recent implementation Flex, that allows us to specify a lexical analyzer
by specifying regular expressions to describe patterns for tokens. The input notation for the Lex
tool is referred to as the Lex language and the tool itself is the Lex compiler. Behind the scenes, the
Lex compiler transforms the input patterns into a transition diagram and generates code, in a file
called lex.yy.c that simulates this transition diagram.
USE OF LEX:
Figure below shows how LEX is used. An input file, which we call lex.l , is written in the Lex
language and describes the lexical analyzer to be generated. This file is given as input to the LEX
Compiler. The LEX compiler transforms lex.l to a C program, in a file that is always named
lex.yy.c. The latter file is compiled by the C compiler into a file called a.out. The C-compiler output
is a working lexical analyzer that can take a stream of input characters and produce a stream of
tokens.

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 22

Structure of LEX Program:

The LEX program consists of the following sections.

 Declaration Section: Consists of regular definitions that can be used in translation rules.
Example: letter {a-zA-Z}
Apart from the regular definitions, the declaration section usually contains the # defines, C prototype
declaration of functions used in translation rules and some # include statements for C library
functions used in translation rules. all these statements are mentioned between special brackets %{
and %}.
Example: %{
 # define WORD 1
 %}
These statements are copied into lex.yy.c.

 Translation Rules Section: consists of statements in the following form
Pattern 1 { Action 1 }
Pattern 2 { Action 2 }

….
Pattern N { Action N }

Each pattern is a regular expression, which may use the regular definitions of the declaration section. Where Pattern 1, Pattern 2,…,Pattern N are regular expressions and the Action 1,Action 2,…Action N
are all program segments describing the action to be taken when the pattern matches.

 Auxiliary Functions section: usually contains the definition of the C functions used in the action
statements. The whole section is copied as is into lex.yy.c. These functions can be compiled
separately and loaded with the lexical analyzer.

The lexical analyzer created by Lex behaves in concert with the parser as follows. When called by the
parser, the lexical analyzer begins reading its remaining input, one character at a time, until it finds
the longest prefix of the input that matches one of the patterns Pi. It then executes the associated
action Ai. Typically, Ai will return to the parser, but if it does not (e.g., because Pi describes
whitespace or comments), then the lexical analyzer proceeds to find additional lexemes, until one of
the corresponding actions causes a return to the parser. The lexical analyzer returns a single value,
the token name, to the parser, but uses the shared, integer variable yylval to pass additional
information about the lexeme found, if needed.
The actions taken when id is matched are listed below:
1. Function installID() is called to place the lexeme found in the symbol table.

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 23

2. This function returns a pointer to the symbol table, which is placed in global variable yylval ,
where it can be used by the parser or a later component of the compiler. Note that installID() has
available to it two variables that are set automatically by the lexical analyzer:
(a) yytext is a pointer to the beginning of the lexeme.
(b) yyleng is the length of the lexeme found.

3. The token name ID is returned to the parser.
The action taken when a lexeme matching the pattern number is similar, using the auxiliary
function installNumO.

Compiler Design (R19) UNIT – I (PART-II)

Dr.MDS, Dept. of I.T., KHIT 24

Example: Write a LEX Program to recognize tokens in the given arithmetic expression.

a=b+c*10;

%{

#include<stdion.h>
%}
letter [a-zA-Z]
digit [0-9]
id {letter}({letter}|{digit})*
num {digit}+(\.{digit}+)?
%%
{id} {printf(“%s is an Identifier\n”, yytext);}
{num} {printf(“%s is a Number\n”, yytext);}
 “+” {printf(“%s is an Arithmetic Operator\n”, yytext);}
 “-“ {printf(“%s is an Arithmetic Operator\n”, yytext);} “*” {printf(“%s is an Arithmetic Operator\n”, yytext);} “/” {printf(“%s is an Arithmetic Operator\n”, yytext);} “=” {printf(“%s is an Assignment Operator\n”, yytext);} “;” {printf(“%s is a Punctuation\n”, yytext);}
%%
main()
{
 yylex(); /* to invoke lexical analyzer */
}
 yywrap()
{
 return 1; /* returns 1 when the end of input is found */
}

Compilation & Execution

$ lex tokens.l
$ cc lex.yy.c
$./a.out
Input: a=b+c*10;

^D
Output:

a is an Identifier
= is an Assignment Operator
b is an Identifier
+ is an Arithmetic Operator
c is an Identifier
* is an Arithmetic Operator
10 is a Number
; is a Punctuation

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 25

Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer

Generator, Optimization of DFA-Based Pattern Matchers.

1.3.1. Finite Automata
 Finite Automaton: It is an abstract machine (or) mathematical model of a computer.

 It is a simple machine to recognize patterns.

 Finite automata are recognizers: for given input string, finite automata produce output as

either yes or no.

F.A comes in two flavors:

a) Non-Deterministic Finite Automata (NFA): it is a finite state machine in which there may

be more than one transitions from present state on given input. NFA has a power to be in

several states at once.

A NFA is expressed mathematically by using quintuple notation as:

M = (Q, ∑, q0, F, δ)

 Where

 Q : is a finite set of states

 ∑ : is a finite input alphabet

 q0 :is a initial state, q0 ∈ Q

 F : is a set of final states, F ⊆ Q

 δ: Q × Σ → 2Q (Powerset of Q)

b) Deterministic Finite Automata (DFA): for every pair of state and input symbol there is a

unique next state.

DFA is a special case of NFA where:

i) There are on moves on input ε.
ii) For each state s and input symbol x, there is exactly one edge out of s labelled x.

 A DFA is mathematically represented by using Quintuple (Five) Notation as

 M = (Q, ∑, δ, q0 , F)

 Where

 Q : is a finite set of states.

 ∑ : is a finite set of input symbols.

 δ: is a transition function which maps current state and current input symbol to

 produce next state. δ: Q × Σ → Q

 q0 : initial state, q0 ∈ Q.

 F : Set of final states, F ⊆ Q.

 Every regular expression and every NFA can be converted to a DFA accepting the

 same language, because it is the DFA that we really implement or simulate when

 building lexical analyzers.

 Example: NFA to recognize the language of regular expression (a|b)*abb.

 Fig: NFA accepting (a|b)*abb.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 26

 Fig: DFA accepting (a|b)*abb.

1.3.2. Simulating a DFA

 The above DFA can be simulated by writing the following algorithm.

 Input: an input string x terminated by eof character. A DFA start state is S0, Accepting

 states F and transition function move(s,c).

 Output: Answer either “Yes” or “No”.

 Method: Apply the following algorithm on input string x. The move(s,c) gives the

 state transition from s on input symbol c. The function nextChar() returns the next

 character of the input string x.

1.3.3. From Regular Expressions to Automata:

 Regular expressions are used to describe the patterns of tokens that are recognized by

 lexical analyzer.

 Conversion of NFA-ε to DFA:

 Converting a given NFA-ε into an equivalent DFA increases the number of states in
 DFA to atmost 2n.

 Consider the given NFA-ε is represented as N=(Q,Σ,δ’,q0,F). The resultant DFA after

 conversion is represented as D= (QD,Σ,δD,[q0],FD).

1. Compute ε-closure of start state of NFA. The result of ε-closure gives the start state of

DFA. The set of states of DFA is QD.

2. While (there are unmarked states T in QD)

3. {

4. Mark T;

5. For (each input symbol a)

6. {

7. δD([T,a])= ε-closure(δ’(T,a))

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 27

8. If the obtained state from step 7 is the new state, consider it as unmarked and add it

to the QD.

9. }

10. }

11. Mark a state as final state if it includes any final state(s) of NFA.

 Problem: Construct the DFA for the given NFA-ε.

 Solution: compute ε-closure(q0)={q0, q1 , q2}.

 Mark [q0, q1 , q2] as start state of DFA.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 28

The resultant DFA for the given NFA-ε is

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 29

1.3.4. Simulation of NFA:

 Input: an input string x terminated by eof character. An NFA N with start state S0,

 Accepting states F and transition function move.

 Output: Answer either “Yes” or “No”.

 Method: The algorithm keeps a set of current states S, that are reachable from s0. If c

 is a next input character, read by function nextChar(), then we first compute

 move(S,c) and then compute ε-closure().

 Algorithm:

1.3.5. Construction of an NFA-ε from regular expression:

 Algorithm: The McNaughton-Yamada-Thompson algorithm to convert a regular

 expression to an NFA.

 Input: A regular expression r over Σ.

 Output: An NFA N accepting L(r).

 Method:

 Basis:
i) For expression ε construct NFA.

 State i is the starting state and f is the final state.

ii) For any sub-expression a in Σ, construct NFA.

 Induction:

 Suppose N(s) and N(t) are NFA’s for regular expression s and t, respectively.

a) Suppose r=s | t. Then N(r), the NFA for r, is constructed as shown in figure below.

Here i and f are the new states, the start and accepting states of N(r).

Note: The final states of N(s) and N(t) are not accepting states in N(r).

N(r) accepts L(s) U L(t).

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 30

Fig: NFA for union of two regular expressions

b) Suppose r=st. Then N(r), the NFA for r, is constructed as shown in figure below.

The start state of N(s) becomes the start state of N(r), and the final state of N(t) is only

the accepting state of N(r). The accepting state of N(s) and N(t) are merged into a

single state, with all the transitions in or out of either state. N(r) accepts L(s)L(t).

Fig: NFA for the concatenation of two regular expressions

c) Suppose r=s*. Then N(r), the NFA for r, is constructed as shown in figure below.

Here i and f are the new states, the start and accepting states of N(r). N(r) accepts

L(r)*.

Fig: NFA for closure of regular expressions

d) Suppose r=(s). Then L(r) =L(s) and we can use the NFA N(s) as N(r).

Problem: Construct NFA for the regular expression (a|b)*abb.

Solution: Divide the given regular expression into sub expressions to construct the

NFA. The sub expressions can be interpreted by using the following parse tree.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 31

Fig.: Parse Tree for the regular expression (a|b)*abb

Now r1=a. N(r1) will be constructed by applying basis rule (ii) as follows:

r2=b, N(r2) will be constructed by applying basis rule (ii) as follows:

Now r3=r1 | r2, N(r3) can be obtained by applying induction rule (a).

Then r4=(r3). N(r4) is same as N(r3) as per induction rule (d).

NFA for r5 can be constructed by applying induction rule (c). r5=(r4)*

NFA for r6 can be constructed as follows.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 32

To obtain NFA for r7=r5.r6 by applying induction rule (b).

NFA for r8 can be constructed as follows

NFA for r9 can be constructed by applying induction rule (b).

r9=r7.r8

NFA for r10 can be constructed as follows.

NFA for r11 can be constructed by applying induction rule (b).

r11=r9.r10

NFA(r11) will give the final NFA for the given regular expression (a|b)*abb.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 33

1.3.6. Design of Lexical Analyzer Generator
i) The Structure of Lexical Analyzer Generator

A LEX program simulates an automaton. Usually, a Lex program is transformed into a

transition table and actions which are used by finite automaton simulator.

Fig.: Structure of Lexical Analyzer Generator (LEX)

 The following components are created by a lex program.
a) Transition Table.

b) The functions that are passed directly through LEX to the output.

c) The actions from the input program which appear as a fragment of code to be invoked at

appropriate time by the automaton simulator.

To construct automaton, the regular expressions specified in the lex program for recognizing

various patterns/lexemes are converted into a single NFA by using algorithm explained in

previous section.

ii) Pattern Matching Based on NFA’s

To simulate NFA, the lexical analyzer has to read the input by using lexemebegin pointer. As

it moves the forward pointer ahead in the input, it determines the set of states it is in each

point. Finally, the NFA simulation reaches a point on the input where there are no next states.

At this point, we can decide the longest prefix (lexeme) matching some pattern. We look

backward in the sequence of set of states, until we find a set that includes one or more

accepting states. If there are several accepting states in that set, we consider the one

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 34

associated with earliest patter Pi in the list from the lex program. Move the forward pointer

back to the end of the lexeme and perform the action Ai associated with pattern Pi

Example: NFA for a,ab and a*b+

Sample lex program to recognize above patterns

a { action A1 for pattern P1}

ab { action A2 for pattern P2}

a*b+ { action A3 for pattern P3}

Fig. NFA to recognize a,ab and a*b+

Fig. Sequence of states obtained on processing input aaba

The above figure shows the set of states of NFA that we enter while processing aaba. We start with ε-closure of state 0, so we get state set {0,1,3,7}. After reading the forth

symbol, we are in empty set of states, since there are no transitions from state 8 on

input symbol a. Thus, we need to backup to determine the set of states that includes

an accepting state. After reading aab we are in state 8, which indicates that a*b+ has

been matched: aab is the logest prefix that gets to an accepting state. So we select

lexeme as aab and execute its action which should return to the parser indicating the

token whose pattern is P3 =a*b+ has been found.

iii) DFA’s for Lexical Analyzer

Another architecture resembling the output of Lex is to convert the NFA for all the patterns

into an equivalent DFA using subset construction algorithm.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 35

1.3.7. Optimization of DFA-Based Pattern Matchers
Lex compiler constructs DFA directly from regular expression without constructing an

intermediate NFA.

Converting a regular expression directly to a DFA.

Input: A regular expression r.

Output: A DFA D that recognizes L(r).

Method:

i) Construct a syntax tree T from the augmented regular expression (r)#.

ii) Compute nullable, firstpos, lastpos, and followpos for T.

iii) Construct Dstates, the set of states of DFA D, and Dtran, the transition function

for D.

The states of D are sets of positions in T. Initially, each state is “unmarked," and

a state becomes “marked" just before we consider its out-transitions. The start

state of D is firstpos(n0), where node n0 is the root of T. The accepting states

are those containing the position for the end marker symbol #.

(OR)

Algorithm to convert a regular expression to DFA directly.

i) Formulate augmented regular expression from the given regular expression. The

augmented regular expression is (a|b)*abb#.

ii) Construct syntax tree for the augmented regular expression.

In syntax tree, leaves correspond to the operands and interior nodes corresponds to

operators. An interior node is called a cat-node, or-node or star-node if it is labelled

by a concatenation (dot), union operator |, or star operator * respectively.

iii) Assign a number to each leaf node in a syntax tree.

iv) Compute nullable of each node.

 nullable(n) is true for a syntax-tree node n if and only if the sub-expression

 represented by n has ε in its language.

v) Compute firstpos of each node.

firstpos(n) is the set of positions in the subtree rooted at n that correspond to the

first symbol of at least one string in the language of the sub-expression rooted at n.

vi) Compute lastpos of each node.

lastpos(n) is the set of positions in the subtree rooted at n that correspond to the last

symbol of at least one string in the language of the sub-expression rooted at n.

Rules for computing nullable, firstpos and lastpos is shown in table below.

Rules for computing nullable, firstpos and lastpos

Node n nullable(n) firstpos(n) lastpos(n) A leaf node labelled ε True ∅ ∅

A leaf node labelled i False {i} {i}

A star-node n=c1* True firstpos(c1) lastpost(c2)

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 36

A or-node n=c1 | c2 nullable(c1)

or

nullable(c2)

firstpos(c1) ∪

firstpost(c2)

lastpost(c1) ∪

lastpost(c2)

A cat-node n=c1.c2 nullable(c1)

and

nullable(c2)

if nullable(c1)

firstpos(c1) ∪ firstpost(c2)

else

firstpost(c2)

if nullable(c2)

lastpost (c1) ∪ lastpost (c2)

else

lastpost (c2)

vii) Compute followpos for cat-node and star-node in a syntax tree.

Rules for computing followpos

a) If n is a cat-node with left child c1 and right child c2, then for every position i in

lastpos(c1), all positions in firstpos(c2) are in followpos(i).

firstpos(c2) lastpos(c1)

b) If n is a star-node, and i is a position in lastpos(n), then all positions in firstpos(n)

are in followpos(i). firstpos(n)lastpos(n)

viii) Consider firstpos(root) as start state of DFA and unmark it.

Compute the transitions from start state on every input symbol. If any new state is

obtained add it to the state set by unmarking it. Repeat this process until all the states

in state set are marked. Construct the DFA from the transitions obtained.

Example: Construct DFA for the regular expression (a|b)*abb

Solution:

i) Formulate augmented regular expression as (a|b)*ab#.

ii) Construct syntax tree for augmented regular expression.

 Fig: Syntax Tree

iii) Assign number to each leaf node.

iv) Compute nullable of each node.

v) Compute firstpos of each node

vi) Compute followpos of each node.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 37

vii) Compute followpos.

nodes followpos

1 {1,2,3}

2 {1,2,3}

3 {4}

4 {5}

5 ∅

viii) Consider root node of syntax tree & compute its firstpos. The result of

firstpos of root node is considered as start state of DFA.

firstpost(root)={1,2,3}

Consider {1,2,3} as state A and unmark it.

Now, compute transitions from A on input symbol a.

(A,a)={1,3}

=followpos(1) ∪ followpos(3)

={1,2,3} ∪ {4}

={1,2,3,4}, consider this set as state B and unmark it.

Now, compute transitions from A on input symbol b.

(A,b)={2}

=followpos(2)

={1,2,3}, this is same as state A.

Now consider unmarked state B and compute transitions on input

symbol a & b.

(B,a)={1,3}

=followpos(1) ∪ followpos(3)

={1,2,3,4}, this is same as state B.

Compiler Design (R19) UNIT – I (PART-III)

Dr.MDS, Dept. of I.T., KHIT 38

(B,b)={2,4}

=followpos(2) ∪ followpos(4)

={1,2,3} ∪ {5}

={1,2,3,5} this is a new state, so consider it as state C and unmark it.

Now consider unmarked state C and compute transitions on input

symbol a & b.

(C,a)={1,3}

=followpos(1) ∪ followpos(3)

={1,2,3,4}, this is same as state B.

(C,b)={2}

=followpos(2)

={1,2,3}

Since no new states are generated, the process of computing transitions

is terminated.

Now, construct the optimized DFA from above states and transitions.

Mark state C as final state because it contains end marker symbol (#).

Example 2: Construct DFA for the regular expression (a|b)*abb

Solution:

