Name :
Roll No. :

Invigilator's Signature :
CS/BCA/SEM-1/BCA-101/2012-13
2012
DIGITAL ELECTRONICS
Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives of the following :

$$
10 \times 1=10
$$

i) The Boolean equation of AND operation is
a) $Y=\bar{A}$
b) $Y=A B$
c) $Y=A+B$
d) None of these.
ii) The logical expression $Y=A+\bar{A} B$ is equivalent to
a) $Y=A B$
b) $Y=\bar{A} B$
c) $\quad Y=A+\bar{B}$
d) $Y=A+B$.
iii) The BCD equivalent of 57 is
a) 111001
b) 01010111
c) 101111
d) 10001010 .
iv) In the BCD code, the decimal number 123 is written as
a) 11011
b) C 3
c) 001010011
d) 000100100011 .
v) A carry look-ahead adder is frequently utsed for addition, because it

a) is faster
b) is more accurate
c) uses fewer gates
d) costs less.
vi) A combinational circuit is one in which the output depends on the
a) input combination at a time
b) previous output and input combination
c) previous input and input combination at a time
d) present output and previous output.
vii) Each individual term in standard SOP form is called as
a) Maxterm
b) Minterm
c) Midterm
d) None of these.
viii) A decoder with 64 output lines has \qquad data inputs.
a) 64
b) 1
c) 6
d) None of these.
ix) The number of flip-flops required to build a Mod-15 counter is
a) 4
b) 5
c) 6
d) 7 .
x) The full form of CCD is
a) Charged-couple disk
b) Charge-coupled device
c) Cache coupled device
d) None of these.

2. Draw a full adder circuit as combination of 2 half adders.
3. State Demorgan's law and prove it for 2 variables.
4. a) Evaluate $(7352)_{10}-(9456)_{10}$ using 9's compliment.
b) State Duality principle.
5. Minimize the following Boolean expression using K-map.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,3,6,8,10,11,13,15)$
6. Design a 4 bit parallel-in parallel-out (PIPO) shift register.

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $\quad 3 \times 15=45$
7. a) Represent the decimal number 45 in
i) Hexadecimal code
ii) Gray code
iii) BCD code.
b) Which gates are called universal gates and why ?
c) Design a 2×4 decoder. Give truth table and draw circuit diagram using basic gates.
d) Implement the expression using a Multiplexer.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,4,5,7,9,11,13,15) \quad 3+5+4+3
$$

8. a) What is combinational circuit ?
b) Differentiate between combinational and sequential circuit.
c) Explain the functionality of clocked JK flip-flop. Give truth table and diagram.
d) Convert SR to JK flip-flop.

$$
2+3+5+5
$$

9. a) What is register ?
b) Design a decimal to binary encoder.
c) What do you mean by Johnson counter ? $3+6+6$
10. a) Given the following truth table.

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Obtain the SOP and POS form and draw the circuit diagram.
b) Express the following Boolean expressions :
i) $f=A B+A^{\prime} C$ in POS form.
ii) $\mathrm{f}=(\mathrm{A}+\mathrm{BC})\left(\mathrm{B}+\mathrm{C}^{\prime} \mathrm{A}\right)$ in SOP form. $8+7$
11. a) What is the difference between synchronous and asynchronous counter ?
b) Write short notes on the following :
i) EPROM
ii) DRAM.
c) What is the difference between SRAM and DRAM ?

$$
4+6+5
$$

