

CS/B. Tech (CSE) /SEM-5/CS-503/2011-12
 2011
 DESIGN AND ANALYSIS OF ALGORITHMS

Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) The running time of an algorithm $T(n)$, where ' n ' is the input size is given by $T(n)=8 \mathrm{~T}(n / 2)+\mathrm{qn}$, if $n>1$ and $T(n)=p$, if $n=1$, where p and q are constants. The order of this algorithms is
a) $\Theta\left(n^{2}\right)$
b) $\quad \Theta\left(n^{n}\right)$
c) $\quad \Theta\left(n^{3}\right)$
d) $\Theta\left(n^{\log n}\right)$.
ii) Which of the following algorithms solves the All-Pair Shortest Path problem ?
a) Dijkstra's
b) Floyd's Warshall's
c) Prim's
d) Kruskal's.
iii) The minimum number of colors neededto color a graph having $n>3$ vertices and 2 edges is
a) 2
b) 3
c) 4
d) 1 .
iv) The diagonal of the adjacency matrix of a graph with a self-loop contains only
a) 1
b) 0
c) $\quad-1$
d) ∞.
v) Which of the following design techniques is used in the quick-sort algorithm ?
a) Dynamic programming b) Back tracking
c) Greedy method
d) Divide and conquer.
vi) The average number of comparisons performed by merge sort algorithm in merging '2' sorted lists of length ' 2 ' is
a) $8 / 5$
b) $11 / 7$
c) $11 / 6$
d) $8 / 3$.

vii) Which of the following is useful in traversing a given graph using BFS ?
a) Stack
b) Linked list
c) Array
d) Queue.
viii) Which of the following can not be performed recursively ?
a) Binary search
b) Quick sort
c) DFS
d) None of these.
ix) The time-complexity of TSP is
a) $O\left(n^{2} 2^{n}\right)$
b) $\quad \Theta\left(n^{2} 2^{n}\right)$
c) $\quad \Omega\left(n^{2} 2^{n}\right)$
d) none of these.
$\mathrm{x})$ In which sorting technique, is an element placed in its proper position at each step ?
a) Bubble sort
b) Quick sort
c) Merge sort
d) Heap sort.

(Short Answer Type Questions)

Write short notes on any three of the following.

$$
3 \times 5=15
$$

2. Find the best and worst case time complexity for merge sort.
3. Solve the following Knapsack problem with the given conditions : $n=3$ weight of the Knapsack $M=20$, Profits $\left(p_{1}, p_{2}, p_{3}\right)=(25,24,15)$ and weight $\left(w_{1}, w_{2}, w_{3}\right)=$ (18, 15, 10).
4. Differentiate between divide-and-conquer and dynamic programming.
5. Solve the following recurrence relation using generating function : $a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$ for $n>=3$ with initial condition $a_{0}=1, a_{1}=-1$ and $a_{2}=1$.
6. Define different asymptotic notation (O, Θ, Ω) with suitable examples.

Answer any three of the following. $3 \times 15=45$
7. Answer the following questions with respect to divide-andconquer :
a) Discuss the procedure for Strassen's matrix multiplication to evaluate the product of ' n ' matrices. Find the resulting recurrence relation for the same and analyze its time-complexity. Is this method an improvement over the conventional matrix multiplication method ? If so, why ? $\quad 7+1+2+2$
b) The solution of recursive MAXMIN problem is based on some assumptions Briefly state the assumptions and its effect on the algorithm in comparison the reality. 3
8. Find the optimal parenthesization of a matrix-chain product whose sequence of dimensions is $<5,10,3,12,5,50$, and $6>$. 5
a) Give an algorithm for the above procedure.
b) Analyze its complexity.
c) What is the union-find algorithm ? Explain with an example.
9. a) Solve the single source shortest path problemfor the following graph considering ' 1 ' as the source vertex using Dijkstra's algorithm.

b) Prove that the time complexity of Dijkstra's algorithm is $O\left(\mathrm{n}^{2}\right)$.
c) Describe the Floyd's algorithm for all pair shortest path problem. Prove that the time complexity of the algorithm is cubic.
$5+3+7$
10. a) Describe the Breadth first search algorithm of a given graph and explain its time complexity.
b) Explain the graph coloring problem and write the algorithm.
c) Apply backtracking technique to solve the 3-colouring problem for the following graph

$$
6+6+3
$$

11. a) What is Non-deterministic algorithm? Differentiate between Deterministic and Non-Deterministic algorithm.
b) Write algorithm to sort an ; array using Deterministic and Non-Deterministic technique. Compare the two techniques and show that the time complexity of nondeterministic technique is better than Deterministic.
c) Describe P class, NP class, NP hard and NP complete class and describe their relationships. $3+(6+2)+4$

