I B. Pharmacy I Semester Supplementary Examinations, May/June - 2019 REMEDIAL MATHEMATICS-I

Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **THREE** Questions from **Part-B**

DADT A

PART -A

1. a) Write first three terms in the expansion of $\left(1 + \frac{x}{2}\right)^{-5}$ (4M)

b) Find $\sin 15^{\circ}$. (4M)

c) Show that the points A(-5,1), B(5,5) and C(10,7) are collinear. (4M)

d) Evaluate $\int \sec x (\sec x + \tan x) dx$ (4M)

e) Show that $y = \cos x + c$ is a solution of the D.E $\frac{dy}{dx} + \sin x = 0$ (3M)

f) Find $Lt_{x\to 0} \frac{3x^2 + 5x - 1}{x^2 - 2x + 6}$ (3M)

PART -B

2. a) If $A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ then verify $(AB)^{-1} = B^{-1}A^{-1}$ (8M)

b) Resolve $\frac{1}{(x+1)^2(x+2)}$ into partial fractions (8M)

3. a) If $A+B+C=\frac{\pi}{2}$, then prove that (8M)

 $\tan 2A + \tan 2B + \tan 2C = ta \operatorname{n} 2A \cdot \tan 2B \cdot \tan 2C$

b) Prove that $\sin 2A = 2\sin A \cdot \cos A = \frac{2\tan A}{1 + \tan^2 A}$ (8M)

4. a) Find the locus of point P such that PA=3PB where A (-9,0) and B(-1,0). (8M)

b) Prove that the set of points lie on a straight line and find its equation (8M) (2,1),(-1,2),(-4,3).

5. a) Evaluate $\int \frac{\sin x}{\sin(x+a)} dx$ (8M)

b) Evaluate $\int \frac{dx}{(x+1)(x+2)}$ (8M)

6. a) Solve the D.E $\frac{dy}{dx} = \frac{x+1}{2-y}$ (8M)

b) Find the $L(e^{-2t}t^2 + \sin 3t)$ (8M)

7. a) Find the derivate of $\sin^{-1} \sqrt{x}$ (8M)

b) Find the derivate of $x^2 + x$ using fundamental theorem. (8M)