

 \sim

[4061] – 102

F.E. (Semester – I) Examination, 2011 APPLIED SCIENCE – I (Chemistry) (2008 Pattern)

Time : 2 Hours

1.

2.

Max. Marks : 50

	 Instructions : 1) Solve Q. 1 or Q. 2, Q. 3 or Q. 4, and Q.5 or Q.6. 2) Neat diagrams must be drawn wherever necessary. 3) Black figures to the right indicate full marks. 4) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculators and steam stables is allowed 5) Assume suitable data, if necessary. 	e d .
a)	What is meant by crystal defects ? State the effects of crystal defects on the properties of crystal. Compare Schottky and Frenkel defects.	7
b)	i) Show that radius ratio for ionic crystals with co-ordination no. 3 is 0.155.ii) Convert the following Weiss indices of the following planes into Miller's Indices	4
	a) $(2, 1, 2)$ b) $(3, -1, 1)$	2
c)	What are carbon nanotubes ? State different types of carbon nanotubes and give their applications.	4
a)	Define Atomic Packing Factor (APF). Calculate APF for SC, BCC and FCC unit cells of cubic crystal.	7
b)	Define co-ordination no Explain co-ordination no. with respect to cubic crystal system.	6
c)	At what glancing angle would the first order diffraction from (110) plane of Nacl be observed using X-ray of wave length 150 pm. The dimension of unit cell is 300 pm.	4 г.о.

3. a) Explain Ostwald's theory of pH indicators.	6		
b) Calculate the equivalent weight of KMnO ₄ in acidic, alkaline and neutr medium.	al 6		
c) Define primary standard solution. Give examples of primary standard solutions used in redox titration, precipitation titration and complexometric titration.	ric 4		
OR			
4. a) How hardness of water is determined using complexometric titration ?	6		
NaOH solution to 25 ml of 0.2 N HCl in the titration.	4		
 ii) 100 ml of NaCl solution when titrated with 0.05 N AgNO₃ requir 36.5 ml in Mohr's method for the end point. Calculate amount of chlori ions per lit. of NaCl soln. 	res de 2		
c) State the different types of indicators used in direct redox titration with example.	4		
5. a) Explain addition polymerization on the basis of free-radical reaction mechanism with suitable example.	7		
b) Compare :	6		
i) Thermosoft and Thermoset polymers			
ii) Natural rubber and vulcanized rubber.			
c) Explain various stages involved in polymer dissolution. OR	4		
6. a) What are plastics ? Discuss various compoundings of plastics.	7		
b) Give synthesis, properties and applications of any two :i) Polystyrene (PS)	6		
ii) Polypropylene (PP)			
111) Neoprene rubber			
a) Write a short note on : Conducting polymers	1		
c) write a short note on . Conducting porymers.	4		
B/II/11	/42,420		