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UNIT 3 

 INTERMEDIATE CODE GENERATION 
3.1 INTRODUCTION 
 

The front end translates a source program into an intermediate representation from 
which the back end generates target code. 
 
Benefits of using a machine-independent intermediate form are: 
 
1. Retargeting is facilitated. That is, a compiler for a different machine can be created 

by attaching a back end for the new machine to an existing front end.  
 
2. A machine-independent code optimizer can be applied to the intermediate representation.  
 

Position of intermediate code generator 
 

     

 intermediate 
  

parser   static   intermediate code 
 

   checker   code generator  code generator 
 

       

 
 
3.2INTERMEDIATE  LANGUAGES 
 
Three ways of  intermediate representation: 
 

 Syntax  tree 


 Postfix  notation 


 Three  address code 
 
The semantic  rules for generating three-address code from common programming language 
constructs are  similar to those for constructing syntax trees or for generating postfix notation. 
 
Graphical Representations: 
 
Syntax tree: 
 

A syntax tree depicts the natural hierarchical structure of a source program. A 
dag(Directed Acyclic Graph) gives the same information but in a more compact way 
becausecommon subexpressions are identified. A syntax tree and dag for the assignment 
statement a : =b * - c + b * - c are as follows: 
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 assign    assign   

 a +   a +  

 *  *    *  

b uminus b uminus b uminus 
        

         

 c  c  c 

 (a) Syntax tree   (b) Dag 
 

Postfix notation: 
Postfix  notation is a linearized representation of a syntax tree; it is a list of the nodes 

of the tree in  which a node appears immediately after its children. The postfix notation for 
the syntax tree given  above is 

a b c  uminus * b c uminus * + assign 
Syntax-directed  definition: 

Syntax  trees for assignment statements are produced by the syntax-directed 
definition. Non-terminal  S generates an assignment statement. The two binary operators + 
and * are examples of the  full operator set in a typical language. Operator associativities and 
precedences are the usual  ones, even though they have not been put into the grammar. This 
definition constructs the  tree from the input a : = b * - c + b* - c. 

PRODUCTION  SEMANTIC RULE 
  

S  id : = E S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr) 

E  E1 +E2 E.nptr : = mknode(‘+’, E1.nptr, E2.nptr ) 

E  E1 * E2 E.nptr : = mknode(‘*’, E1.nptr, E2.nptr ) 

E - E1 E.nptr : = mknode(‘uminus’, E1.nptr) 

E  (E1 ) E.nptr : = E1.nptr 

E  id E.nptr : = mkleaf( id, id.place ) 
  

Syntax-directed definition to produce syntax trees for assignment statements 
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The token id has an attribute place that points to the symbol-table  entry for the identifier. 
A symbol-table entry can be found from an attribute id.name, representing  the lexeme 
associated with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of 
characters, then attribute name might be the index of the first character of the lexeme. 
 

Two representations of the syntax tree are as follows. In (a) each node is represented as a 
record with a field for its operator and additional fields for pointers to its children. In (b), nodes 
are allocated from an array of records and the index or position of the node serves as the pointer 
to the node. All the nodes in the syntax tree can be visited by following pointers, starting from 
the root at position 10. 
 

Two representations of the syntax tree 
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Three-Address Code: 
 
Three-address code is a sequence of statements of the general form 
 

x : = y op z 
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where x, y and z are names, constants, or compiler-generated temporaries; op stands for any 
operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-
valued data. Thus a source language expression like x+ y*z might be translated into asequence 
 

t1 : = y * z t2 : 
= x + t1 

 
wheret1 and t2 are compiler-generated temporary names. 
Advantages of three-address code: 
 The unraveling of complicated arithmetic expressions and of nested flow-of-control 

statements makes three-address code desirable for target code generation and 
optimization. 


 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged – unlike postfix notation. 
Three-address code is a linearized representation of a syntax tree or a dag in which 

explicit names correspond to the interior nodes of the graph. The syntax tree and dag are 
represented by the three-address code sequences. Variable names can appear directly in three-
address statements. 
 

Three-address code corresponding to the syntax tree and dag given above 
 

t1 : = - c t1 : = -c 

t2 :  = b * t1  t2 : = b * t1 

t3 :  = - c  t5 : = t2 + t2 

t4 : = b * t3  a : = t5 

t5 :  = t2 + t4  

a :  = t5  
 
 
(a) Code  for the syntax tree  (b) Code for the dag 

 
The reason for  the term “three-address code” is that each statement usually contains three 
addresses, two  for the operands and one for the result. 
Types of Three -Address Statements: 
The common three-address statements are: 
1. Assignment statements of the form x : = yopz, where op is a binary arithmetic or logical 

operation.  
 
2. Assignment instructions of the form x : =opy, where op is a unary operation. Essential unary 
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operations include unary minus, logical negation, shift operators, and conversion operators 
that, for example, convert a fixed-point number to a floating-point number.  

 
3. Copy statements of the formx : = ywhere the value of y is assigned to x. 
 
4. The unconditional jump goto L. The three-address statement with label L is the next to be 

executed.  
 
5. Conditional jumps such as ifx relop ygoto L. This instruction applies a relational operator (   

<, =, >=, etc. ) to x and y, and executes the statement with label L next if x stands in relation 
relop to y. If not, the three-address statement following if x relop y goto L is executed 
next,as in the usual sequence. 

 
6. param x and call p, n for procedure calls and return y, where y representing a returned 

valueis optional. For example,  
param 
x1 
param 
x2  

. . .   
param 
xn call 
p,n   

generated as part of a call of the procedure p(x1, x2, …. ,xn ).  
 

7. Indexed assignments of the form x : = y[i] and x[i] : = y.  
 

8. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.  
 

3.3 SYNTAX-DIRECTED  TRANSLATION INTO THREE-ADDRESS CODE: 
 

When  three-address code is generated, temporary names are made up for the interior 
nodes of a syntax  tree. For example, id : =E consists of code to evaluate E into some 
temporary t, followed by  the assignment id.place : = t. 

 
Given  input a : = b * - c + b * - c, the three-address code is as shown above. 

The synthesized  attribute S.code represents the three-address code for the assignment 
S. The nonterminal E has two attributes : 
1. E.place, the  name that will hold the value of E , and  
2. E.code, the  sequence of three-address statements evaluating E. 
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Syntax -directed definition to produce three-address code for assignments 
PRODUCTION  SEMANTIC RULES 

  

S  id : = E  S.code : = E.code || gen(id.place ‘:=’ E.place) 

E  E1 + E2 E.place := newtemp; 
 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place) 

E  E1 * E2 E.place := newtemp; 
 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place) 

E  - E1 E.place := newtemp; 
 E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place) 

E  (E1 ) E.place : = E1.place; 
 E.code : = E1.code 

E  id E.place : = id.place; 
 E.code : = ‘ ‘ 
  
 

Semantic rules generating code for a while statement 
S.begin: 
 

 
E.code 

 
if E.place = 0 goto S.after 

 
  S1.code 
    

  goto S.begin  

S.after: . . .  

PRODUCTION  SEMANTIC RULES 

S  while E do S1  S.begin := newlabel; 
   S.after := newlabel; 
   S.code := gen(S.begin ‘:’) || 
    E.code || 
    gen ( ‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)|| 
    S1.code || 
    gen ( ‘goto’ S.begin) || 
    gen (S.after ‘:’) 



  Intermediate Code Generator UNIT 3  
 

COMPILER DESIGN Page 7 
 

 The  function newtemp returns a sequence of distinct names t1,t2,….. in response to 
successive  calls. 

 Notation gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z. 
Expressions  appearing instead of variables like x, y and z are evaluated when passed to 
gen, and quoted operators or operand, like ‘+’ are taken literally.

 Flow-of–control statements can be added to the language of assignments. The code for 
SwhileEdoS1is generated using new 
attributesS.beginandS.afterto mark the firststatement in the code for E and 
the statement following the code for S, respectively. 

 The function newlabel returns a new label every time it is called. 
 We assume that a non-zero expression represents true; that is when the value of E 

becomes zero, control leaves the while statement. 
 
 
3.4 IMPLEMENTATION OF THREE-ADDRESS STATEMENTS: 
 

A three-address statement is an abstract form of intermediate code. In a compiler, 
these statements can be implemented as records with fields for the operator and the operands. 
Three such representations are: 

 Quadruples 


 Triples 


 Indirect triples 
 
Quadruples: 
 

 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result.


 The op field contains an internal code for the operator. The three-address statement x : =y 
op z is represented by placingyinarg1,zinarg2andxinresult.


 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table 

entries for the names represented by these fields. If so, temporary names must be entered 
into the symbol table as they are created. 

Triples: 
 

 To avoid  entering temporary names into the symbol table, we might refer to a temporary 
value  by the position of the statement that computes it. 

  If we  do so, three-address statements can be represented by records with only three 
 The  fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table 

or pointers  into the triple structure ( for temporary values ). 
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
 Since  three fields are used, this intermediate code format is known as triples. 



 op  arg1  arg2  result 
     

(0) uminus c   t1 

(1) * b t1 t2 

(2) uminus c  t3 

(3) * b t3 t4 

(4) + t2 t4 t5 

(5) : = t3  a 
     
 

(a) Quadruples      (b) Triples 
 
Quadruple and triple representation of  three-address statements given above: 
A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below 
while x : = y[i] is naturally represented as two operations. 

  
(a) x[i] : = y               (b) x : = y[i] 

                                      
 
 
 
 
 
 
 

 fields: op, arg1 and arg2. 
     

Indirect Triples: 
 

 Another  implementation of three-address code is that of listing pointers to triples, 
rather than  listing the triples themselves. This implementation is called indirect triples. 


 For  example, let us use an array statement to list pointers to triples in the desired 

order. Then  the triples shown above might be represented as follows: 
 
 

  op  arg1 arg2 
     

 (0)  uminus c   

(1) * b (0)  

(2) uminus c   

(3) * b (2)  

(4) + (1) (3)  

(5) assign a (4)  
     

 op arg1 arg2  
     

(0) = [ ] y I 

(1) assign x (0)  
     

  op arg1 arg2   
       

(0) [ ] = x i   

(1) assign (0) y   
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   statement     op  arg1  arg2  
           

           

(0)  (14)     (14)  uminus c   
(1)  (15)     (15) * b  (14)  
(2)  (16)     (16)  uminus c   
(3)  (17)     (17) * b  (16)  
(4)  (18)     (18) +  (15)  (17)  
(5)  (19)     (19)  assign a  (18)  

           
 

Indirect triples representation of three-address statements 
 
3.5 DECLARATIONS 

As the sequence of declarations in a procedure or block is examined, we can lay out 
storage for names local to the procedure. For each local name, we create a symbol-table entry 
with information like the type and the relative address of the storage for the name. The relative 
address consists of an offset from the base of the static data area or the field for local data in an 
activation record. 
Declarations in a Procedure:  

The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a 
single procedure to be processed as a group. In this case, a global variable, say offset, can 
keep track of the next available relative address. 
In the translation scheme shown below: 

 Nonterminal P generates a sequence of declarations of the form id :T.
 Before the first declaration is considered, offset is set to 0. As each new name is seen , 

that name is entered in the symbol table with offset equal to the current value of offset, 
and offset is incremented by the width of the data object denoted by that name. 

 The procedure enter( name, type, offset ) creates a symbol-table entry for name, gives its 
type type and relative address offset in its data area. 

 Attribute type represents a type expression constructed from the basic typesinteger and 
real by  applying the type constructors pointer and array. If type 
expressionsarerepresented  by graphs, then attribute type might be a pointer to the node 
representing a type  expression. 

 The  width of an array is obtained by multiplying the width of each element by the 
number  of elements in the array. The width of each pointer is assumed to be 4. 
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 Computing the types and relative addresses of declared names 
 

P  D  { offset : = 0 } 
 

D  D ; D 
 

D  id : T  { enter(id.name, T.type, offset);  
offset : = offset + T.width } 

 
T  integer { T.type : = integer;  

T.width : = 4 } 
 

T  real { T.type : = real;  
T.width : = 8 } 

 
T  array [ num ] of T1 { T.type : = array(num.val, T1.type);  

T.width : = num.val X T1.width } 
 

T  ↑ T1 { T.type : = pointer ( T1.type);  
T.width : = 4 }Keeping Track of Scope 
Information: 

 
When a nested procedure is seen, processing of declarations in the enclosing procedure is 

temporarily suspended. This approach will be illustrated by adding semantic rules to the 
following language: 
 

P  D 
 

D  D ; D | id : T | proc id ; D ; S 
 
One possible implementation of a symbol table is a linked list of entries for names. 

A new symbol table is created when a procedure declaration Dproc idD1;S is seen, and 
entries for the declarations in D1 are created in the new table. The new table points back to the 
symbol table of the enclosing procedure; the name represented by id itself is local to the 
enclosing procedure. The only change from the treatment of variable declarations is that the 
procedure enter is told which symbol table to make an entry in. 

For  example, consider the symbol tables for procedures readarray,exchange, and 
quicksort pointing  back to that for the containing procedure sort, consisting ofthe entireprogram. 
Since partition is declared within quicksort, its table points to that ofquicksort. 
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 Symbol tables for nested procedures 
 

         sort       
 

                 

      nil  header        
 

       a         
 

       x         
 

      readarray    to readarray  
 

      exchange    to exchange  
 

      quicksort         
 

  Readarray  exchange     quicksort  
 

 
 header    header    header  

 

        
 

  i           k   
 

             v   
 

            partition   
 

                
 

             partition  
 

             header  
 

             i   
 

             j   
 

                 

 
The semantic rules are defined in terms of the following operations: 
 
1. mktable(previous) creates a new symbol table and returns a pointer to the new table. 

Theargument previous points to a previously created symbol table, presumably that for the 
enclosing procedure.  

 
2. enter(table, name, type, offset) creates a new entry for name name in the symbol table 

pointedto by table. Again, enter places type type and relative address offset in fields within 
the entry.  

3. addwidth(table, width) records the cumulative width of all the entries in table in the 
headerassociated with this symbol table.  

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol 
tablepointed to by table. The argument newtable points to the symbol table for this procedure 
name. 
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Syntax  directed translation scheme for nested procedures 

 
P  M D  { addwidth ( top( tblptr) , top (offset));  

 pop (tblptr); pop (offset) } 
 
M ɛ  { t : = mktable (nil);  

 push (t,tblptr); push (0,offset) } 
 
D  D1 ; D2 
 
D  proc id ;  N D1 ; S     { t : = top (tblptr);  

 addwidth ( t, top (offset));  
 pop (tblptr); pop (offset);  
 enterproc (top (tblptr), id.name, t) } 

 
D  id : T  { enter (top (tblptr), id.name, T.type, top (offset));  

top (offset) := top (offset) + T.width } 
 
N ɛ { t := mktable (top (tblptr));  

push (t, tblptr); push (0,offset) } 
 
 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and 

partition when the declarations in partition are considered. 

 The top element of stack offset is the next available relative address for a local of 

the current procedure. 

 All semantic actions in the subtrees for B and C in 

 
A  BC {actionA} 

 
are done before actionA at the end of the production occurs. Hence, the action associated 
with the marker M is the first to be done. 

 The action for nonterminal M initializes stack tblptr with a  symbol table for the 
outermost scope, created by operation mktable(nil). The action  also pushes relative 
address 0 onto stack offset. 


 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new 

symbol table. The argument top(tblptr) gives the enclosing scope for the new table. 

 For each variable declaration id: T, an entry is created for id in the current symbol table. 

The top of stack offset is incremented by T.width. 

 When the action on the right side of Dproc id; ND1; S occurs, the width of all 
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declarations generated by D1 is on the top of stack offset; it is recorded using addwidth. 
Stacks tblptr and offset are then popped. 
At this point, the name of the enclosed procedure is entered into the symbol table of 
its enclosing procedure. 

 
3.6 ASSIGNMENT  STATEMENTS 
 
Suppose that  the context in which an assignment appears is given by the following grammar. 
 

P  M D 
 

M ɛ 
 

D  D ; D | id : T | proc id ; N D ; S 
 

N ɛ 
 
Nonterminal P  becomes the new start symbol when these productions are added to those in the 
translation scheme  shown below. 
 

Translation  scheme to produce three-address code for assignments 
 

S  id : =  E   { p : = lookup ( id.name);  
if p ≠nil then  
emit( p ‘ : =’ E.place)  
else error } 

 
E  E1 + E2    { E.place : = newtemp;  

emit( E.place ‘: =’ E1.place ‘ + ‘ E2.place ) } 
 

E  E1 * E2    { E.place : = newtemp;  
emit( E.place ‘: =’ E1.place ‘ * ‘ E2.place ) } 

 
E - E1       { E.place : = newtemp;  

emit ( E.place ‘: =’ ‘uminus’ E1.place ) } 
 

E  ( E1 )    { E.place : = E1.place } 
 

E  id     { p : = lookup ( id.name); 
 

if p ≠nil then  
E.place : = 

p else error  
} 
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Reusing Temporary Names 
 The temporaries used to hold intermediate values in expression calculations tend to 

clutter up the symbol table, and space has to be allocated to hold their values. 

 Temporaries can be reused by changing newtemp. The code generated by the rules for E 
E1+ E2has the general form:

 
evaluate E1 into t1 
evaluate E2 into t2 
t : = t1 + t2 

 
 The  lifetimes of these temporaries are nested like matching pairs of balanced parentheses. 


 Keep a  count c , initialized to zero. Whenever a temporary name is used as an operand, 

decrement  c by 1. Whenever a new temporary name is generated, use $c and increase c 
by 1. 


 For  example, consider the assignment x := a * b + c * d – e * f 

 Three-address code with stack temporaries 
 

    

  statement  value of c 
    

  0  
 $0 := a * b 1  
 $1 := c * d 2  
 $0  := $0 + $1 1  
 $1  := e * f 2  
$0 := $0 - $1 1  
x := $0 0  

    

 
Addressing Array Elements: 
 

Elements of an array can be accessed quickly if the elements are stored in a block of 
consecutive locations. If the width of each array element is w, then the ith element of array A 
begins in location 
 

base + ( i – low ) x w 
 
where low is the lower bound on the subscript and base is the relative address of the storage 
allocated for the array. That is, base is the relative address of A[low]. 
The expression can be partially evaluated at compile time if it is rewritten  as 
 

i x w + ( base – low x w) 
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The subexpression c = base – lowxw can be evaluated when the declaration of the array is seen. 
Let us assume that c is saved in the symbol table entry for A , so the relative address of A[i] is 
obtained by simply adding i x w to c. 
 
Address calculation of multi-dimensional arrays: 
A two-dimensional array is stored in of the two forms : 
 Row-major (row-by-row) 
 Column-major (column-by-column) 

 
    Layouts for a 2 x 3 array    

 

          
 

     A[ 1,1 ]   A [ 1,1 ] 
 first column  

        

first row 
 

 A[ 1,2 ] 
 

 A [ 2,1 ] 
 

     
 

        

      

 A [ 1,2 ] 
    

     A[ 1,3 ]   
 second column 

 

       

 

 

     A[ 2,1 ]   A [ 2,2 ]  

         

second  row 
        

  A[ 2,2 ]   A [ 1,3 ]    
 

       

 

 third column 
 

     A[ 2,3 ]   A [ 2,3 ]  

         

           

        

    (a) ROW-MAJOR  (b) COLUMN-MAJOR 
 

 
In the case of  row-major form, the relative address of A[ i1 ,i2] can be calculated by the formula 
 

 base + ((i1 – low1) x n2 + i2 – low2) xw 
 
where, low1 and low2 are the lower bounds on the values of i1 and i2 and n2 is the number of 
values that i2 can take. That is, if high2 is the upper bound on the value of i2, then n2= high2–low2 
+ 1. 
Assuming that i1 and i2 are the only values that are known at compile time, we can rewrite the 
above expression as 
 

(( i1x n2 ) + i2 ) x w + ( base – (( low1x n2 ) + low2 ) x w) 
 
Generalized formula: 
 
The expression generalizes to the following expression for the relative address of A[i1,i2,…,ik] 

 
(( . . . (( i1n2 + i2 ) n3 + i3) . . . ) nk + ik ) x w + base – (( . . .((low1n2 + low2)n3 + low3) . . 
.) nk + lowk) x w 
 
for all j, nj = highj – lowj +1 
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The Translation Scheme for Addressing Array Elements : 
 
Semantic actions will be added to the grammar : 
 

(1) S  L : = E   
(2) E  E + E   
(3) E ( E )  
(4) E  L   
(5) L  Elist ]  
(6) L id  
(7) Elist  Elist , E   
(8) Elist id[ E  

 
Let us generate a normal assignment if L is a simple name, and an indexed assignment into the 
location denoted by L otherwise : 
 
(1) S  L : = E  { ifL.offset =null then/ * L is a simpleid*/ 

   emit ( L.place ‘: =’ E.place ); 
   else 
   emit ( L.place ‘ [‘ L.offset ‘ ]’ ‘: =’E.place) } 

(2) E  E1 +  E2  { E.place : = newtemp; 
   emit ( E.place ‘: =’ E1.place ‘ +’ E2.place )} 

(3) E  ( E1)  { E.place : = E1.place} 
 
When an array  reference L is reduced to E , we want the r-value of L. Therefore we use indexing 
to obtain the  contents of the location L.place [ L.offset ] : 
 
(4) E  L  { ifL.offset =null then/* L is a simpleid* / 

    E.place : = L.place 
   else begin 
    E.place : = newtemp; 
   emit ( E.place ‘: =’ L.place ‘ [‘ L.offset ‘]’) 
  end } 

(5) L  Elist ] { L.place : = newtemp; 
   L.offset : = newtemp; 
   emit (L.place ‘: =’ c( Elist.array )); 
   emit (L.offset ‘: =’ Elist.place ‘*’ width (Elist.array)) } 

(6) L id { L.place := id.place; 
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   L.offset := null} 

(7) Elist  Elist1 , E { t := newtemp; 
   m : = Elist1.ndim + 1; 

emit ( t ‘: =’ Elist 1.place ‘*’ limit 
(Elist1.array,m)); emit ( t ‘: =’ t ‘+’ E.place);  
Elist.array : = Elist1.array;  
Elist.place : = t;  
Elist.ndim : = m } 

 
(8) Elistid [ E   { Elist.array : =id.place; 
 

Elist.place : = E.place;  
Elist.ndim : = 1 } 

 
Type conversion within Assignments : 
 

Consider the grammar for assignment statements as above, but suppose there are two 
types – real and integer , with integers converted to reals when necessary. We have another 
attribute E.type, whose value is either real or integer. The semantic rule for E.type associated 
with the production EE + E is : 
 

E  E + E      { E.type : =  
if E1.type = integer and  

 E2.type = integer then integer  
 else real} 

 
The  entire semantic rule for EE + E and most of the other productions must be 

modified to  generate, when necessary, three-address statements of the form x : = inttoreal y, 
whose effect is  to convert integer y to areal of equal value, called x. 
 

 Semantic action for EE1+ E2 
 
E.place :=  newtemp;  
if E1.type =  integer and E2.type = integer then 

beginemit( E.place  ‘: =’ E1.place ‘int +’ 
E2.place); E.type : =  integer  

end  
else if E1.type  = real and E2.type = real then 

beginemit(  E.place ‘: =’ E1.place ‘real +’ 
E2.place); E.type :  = real  

end  
else if E1.type = integer and E2.type = real then 
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begin u : = newtemp;  
emit( u ‘: =’ ‘inttoreal’ E1.place); emit( 
E.place ‘: =’ u ‘ real +’ E2.place); 
E.type : = real  

end  
else if E1.type = real and E2.type =integer then 

begin u : = newtemp;  
emit( u ‘: =’ ‘inttoreal’ E2.place); emit( 
E.place ‘: =’ E1.place ‘ real +’ u); 
E.type : = real  

end 
else  

E.type : = type_error;  
For example, for the input x : = y + i * j  
assuming x and y have type real, and i and j have type integer, the output would look like 
 

t1 : = i int* j t3 : 
= inttoreal t1 t2 : 
= y real+ t3 x : = 
t2 

 
3.7 BOOLEAN EXPRESSIONS 
 

Boolean expressions have two primary purposes. They are used to compute logical 
values, but more often they are used as conditional expressions in statements that alter the flow 
of control, such as if-then-else, or while-do statements. 
 

Boolean expressions are composed of the boolean operators ( and, or, and not ) applied 
to elements that  are boolean variables or relational expressions. Relational expressions are of the 
form E1relopE2, where E1 and E2 are arithmetic expressions. 
 
Here we consider  boolean expressions generated by the following grammar : 
 

E  E or E | E and E | not E | ( E ) | id relop id | true | false 
 
Methods of  Translating Boolean Expressions: 
 
There are two  principal methods of representing the value of a boolean expression. They are : 
 
 To encode  true and false numerically and to evaluate a boolean expression analogously 

to an  arithmetic expression. Often, 1 is used to denote true and 0 to denote false. 

 To  implement boolean expressions by flow of control, that is, representing the value of a 

boolean  expression by a position reached in a program. This method is particularly 
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convenient  in implementing the boolean expressions in flow-of-control statements, such 
as the  if-then and while-do statements. 

Numerical Representation 
Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from 

left to right, in a manner similar to arithmetic expressions. 
 
For example : 
The translation for  

a or b and not c is 
the three-address sequence  

t1 : = not c t2 
: = b and t1 t3 
: = a or t2 

A relational expression such as a < b is equivalent to the conditional 
statementif a < b then 1 else 0  

which can be translated into the three-address code sequence (again,  we arbitrarily 
start statement numbers at 100) : 

100 :  if a < b goto 103  
101 :  t : = 0  
102 :  goto 104  
103 :  t : = 1  
104 : 

Translation scheme using a numerical representation for booleans 
E  E1or E2 { E.place : = newtemp; 

 

E  E1and E2 
emit( E.place ‘: =’ E1.place ‘or’E2.place )} 

 

{ E.place : = newtemp; 
 

E not E1 
emit( E.place ‘: =’ E1.place ‘and’E2.place )} 

 

{ E.place : = newtemp; 
 

 emit( E.place ‘: =’ ‘not’ E1.place )} 
 

E  ( E1 )  { E.place : = E1.place } 
 

E id1relop  id2  { E.place : = newtemp; 
 

  emit( ‘if’ id1.place relop.op id2.place ‘goto’ nextstat +3); 
 

  emit( E.place ‘: =’ ‘0’ ); 
 

  emit(‘goto’ nextstat +2); 
 

  emit( E.place ‘: =’ ‘1’) } 
 

E true  { E.place : = newtemp; 
 

E false 
 emit( E.place ‘: =’ ‘1’) } 

 

 { E.place : = newtemp; 
 

  emit( E.place ‘: =’ ‘0’) } 
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Short-Circuit  Code:  
 

 
It is  also possible to translate a boolean expression into three-address code without 

generating code for any of  the boolean operators and without having the code necessarily 
evaluate the entire expression. This  style of evaluation is sometimes called “short-circuit” or 
“jumping” code. It is possible to evaluate boolean expressions without generating code for the 
boolean operators and,or, and not if we represent the value of an expression by a position in the 
code sequence. 
 

Translation of a < b or c < d and e < f 
 
100 : if a < b goto 103 107 : t2 : = 1 

101 : t1 : = 0  108 : if e < f goto 111 

102 : goto 104  109 : t3 : = 0 

103 : t1 : = 1  110 : goto 112 

104 : if c < d goto 107 111 : t3 : = 1 

105 : t2 : = 0  112 : t4 : = t2 and t3 

106 : goto 108  113 : t5 : = t1 or t4  
 
Flow-of-Control Statements 

Let us consider the translation of boolean expressions into three-address code in the 
context of if-then, if-then-else, and while-do statements such as those generated by the following 
grammar: 

S if E then S1  
| if E then S1 else S2 
| while E do S1 

In each of these productions, E is the Boolean expression to be translated. In the translation, we 
assume that a three-address statement can be symbolically labeled, and that the function 
newlabel returns a new symbolic label each time it is called. 
 E.true is the label to which control flows if E is true, and E.false is the label to which 

control flows if E is false. 
 The semantic  rules for translating a flow-of-control statement S allow control to flow 

from  the translation S.code to the three-address instruction immediately following 
S.code. 

 S.next  is a label that is attached to the first three-address instruction to be executed after 
the code  for S. 
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 Code for if-then , if-then-else, and while-do statements 

 
 
 
 
 
 

 E.code  to E.true  E.true:  
E.true :  E.false 

 S1.code  
 E.false: 

 
E.false :    . . . 
 

S.next: 

 
 to E.true 

 E.code  
 to E.false  

 S1.code 
 
 
 goto S.next 
 

 S2.code 
 
 
 

. . . 
 

(a) if-then  (b) if-then-else 
 

   
 

S.begin: E.code to E.true 
 

  to E.false  

E.true: S1.code 
 

 
 

 
goto S.begin  

E.false: . . . 
 

(c) while-do 
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Syntax-directed definition for flow-of-control statements  

PRODUCTION 
 

SEMANTIC RULES 
  

  
 

     

S if E then S1  E.true : = newlabel;  
 

  E.false : = S.next;  
 

  S1.next : = S.next;  
 

  S.code : = E.code || gen(E.true ‘:’) || S1.code  
 

S if E then S1else S2  E.true : = newlabel;  
 

  E.false : = newlabel;  
 

  S1.next : = S.next;  
 

  S2.next : = S.next;  
 

  S.code : = E.code || gen(E.true ‘:’) || S1.code ||  
 

  gen(‘goto’ S.next) ||  
 

  gen( E.false ‘:’) || S2.code  
 

S while E do S1   S.begin : = newlabel;  
 

   E.true : = newlabel;  
 

   E.false : = S.next;  
 

   S1.next : = S.begin;  
 

   S.code : = gen(S.begin ‘:’)|| E.code ||  
 

   gen(E.true ‘:’) || S1.code ||  
 

   gen(‘goto’ S.begin)  
 

    
 

 
 
Control-Flow  Translation of Boolean Expressions: 
 

 Syntax-directed definition to produce three-address code for booleans 
 

 PRODUCTION  SEMANTIC RULES 
  

E  E1or E2  E1.true : = E.true; 
 E1.false : = newlabel; 
 E2.true : = E.true; 
 E2.false : = E.false; 
 E.code : = E1.code || gen(E1.false ‘:’) || E2.code 

E  E1and E2 E.true : = newlabel; 
 E1.false : = E.false; 
 E2.true : = E.true; 
 E2.false : = E.false; 
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 E.code : = E1.code || gen(E1.true ‘:’) || E2.code 

E not E1 E1.true : = E.false; 
 E1.false : = E.true; 
 E.code : = E1.code 

E  ( E1 ) E1.true : = E.true; 
   
 

E1.false : = E.false; 
 

 
 

 E.code : = E1.code 
 

E id1relop id2 E.code : = gen(‘if’id1.place relop.op id2.place 
 

 ‘goto’ E.true) || gen(‘goto’ E.false) 
 

E true E.code : = gen(‘goto’ E.true) 
 

E false E.code : = gen(‘goto’ E.false) 
 

  
 

 
 
3.8 CASE STATEMENTS 
The “switch” or “case” statement is available in a variety of languages. The switch-
statement syntax is as shown below :  

Switch-statement syntax 
switch expression 

begin  
case value:statement 
case value:statement  

 . . .  
case value:statement 
default  : statement  

end 
There  is a selector expression, which is to be evaluated, followed by n constant values 

that the expression  might take, including a default “value” which always matches the expression 
if no other value  does. The intended translation of a switch is code to: 

1. Evaluate  the expression.   
2. Find which  value in the list of cases is the same as the value of the expression.   
3. Execute the statement associated with the value found.  

Step (2) can be implemented in one of several ways : 
o By a sequence of conditional goto statements, if the number of cases is small. 
o By creating a table of pairs, with each pair consisting of a value and a label for 

the code of the corresponding statement. Compiler generates a loop to compare 
the value of the expression with each value in the table. If no match is found, the 
default (last) entry is sure to match. 
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o If the number of cases s large, it is efficient to construct a hash table. 
o There is a common special case in which an efficient implementation of the n-

way branch exists. If the values all lie in some small range, say imin to imax, and the 
number of different values is a reasonable fraction of imax - imin, then we can 
construct an array of labels, with the label of the statement for value j in the entry 
of the table with offset j - imin and the label for the default in entries not filled 
otherwise. To perform switch, 

 
evaluate the expression to obtain the value of j , check the value  is within range and 
transfer to the table entry at offset j-imin . 

 
Syntax-Directed Translation of Case Statements: 
 

Consider the following switch statement: 
 

switch E begin  
case V1:S1 case V2:S2  

. . .  
case Vn-1:Sn-1  
default :  Sn  

end 
 
This case statement is translated into intermediate code that has the following form : 
 

 Translation of a case statement 
 

  code to evaluate E into t 
 

  goto test 
 

 L1:  code for S1 
 

  goto next 
 

 L2:  code for S2 
 

  goto next 
 

   . . . 
 

 Ln-1:  code for Sn-1 
 

  goto next 
 

 Ln:  code for Sn 
 

  goto next 
 

 test :  if  t = V1 goto L1 
 

  if  t = V2 goto L2 
 

  . . . 
 

 if t = Vn-1 goto Ln-1 
 

next : goto Ln 
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To translate into above form : 
 

 When keyword switch is seen, two new labels test and next, and a new temporary t are 
generated. 


 As expression E is parsed, the code to evaluate E into t is generated. After processing E , 

the jump goto test is generated. 


 As each case keyword occurs, a new label Li is created and entered into the symbol table. 
A pointer to this symbol-table entry and the value Vi of case constant are placed on a 
stack (used only to store cases). 

 Each statement caseVi: Si is processed by emitting the newly  created label Li, followed 
by the code for Si , followed by the jump goto next. 


 Then when the keyword end terminating the body of the switch is found, the code can be 

generated for the n-way branch. Reading the pointer-value pairs on the case stack from 
the bottom to the top, we can generate a sequence of three-address statements of the form 

case V1 L1 
case V2 L2  

. . .  
case Vn-1 Ln-1  
case t Ln 
label next 

where t is the name holding the value of the selector expression E, and Ln is the label for 
the default statement. 

3.9 BACKPATCHING 
The  easiest way to implement the syntax-directed definitions for boolean expressions is to 

use two passes.  First, construct a syntax tree for the input, and then walk the tree in depth-first order, 
computing  the translations. The main problem with generating code for boolean expressions and  
flow-of-control statements in a single pass is that during one single pass we may not know the  labels 
that control must go to at the time the jump statements are generated. Hence, a series of  branching 
statements with the targets of the jumps left unspecified is generated. Each statement will  be put on a 
list of goto statements whose labels will be filled in when the proper label can be  determined. We 
call this subsequent filling in of labels backpatching. 
To manipulate  lists of labels, we use three functions : 

1. makelist(i) creates a new list containing only i, an index into the arrayof quadruples; 
makelist returns a pointer to the list it has made.  

2. merge( p1,p2) concatenates the lists pointed to by p1and p2, and returns apointer to the 
concatenated list.   
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3. backpatch(p,i) inserts i as the target label for each of the statements on the list pointed 
toby p. 

 
Boolean Expressions: 
 

Let us  construct a translation scheme suitable for producing quadruples for boolean 
expressions during bottom-up parsing. The grammar we use is the following: 
 

1. E  E1or M E2  
2. | E1andM E2  
3. | notE1  
4. | ( E1)   
5. | id1relop id2  
6. | true  
7. | false  
8. M ɛ  

Synthesized attributes truelist and falselist of nonterminal E are used to generate jumping code for 
boolean expressions. Incomplete jumps with unfilled labels are placed on lists pointed to by  
E.truelist and E.falselist. 
 
Consider production EE1andM E2. If E1 is false, then E is also false, so the statements on 
E1.falselist become part of E.falselist. If E1is true, then we must next test E2, so the target for 
thestatements E1.truelist must be the beginning of the code generated for E2. This target is 
obtained using marker nonterminal M. 
 
Attribute M.quad records the number of the first statement of E2.code. With the production M 
ɛ we associate the semantic action 
 

{ M.quad : = nextquad } 
 
The variable nextquad holds the index of the next quadruple to follow. This value will be 
backpatched onto  the E1.truelist when we have seen the remainder of the production 
EE1andME2. The  translation scheme is as follows: 
 

(1) E  E1or M E2  { backpatch ( E1.falselist, M.quad); 
   E.truelist : = merge( E1.truelist, E2.truelist); 
   E.falselist : = E2.falselist } 

(2) E  E1and M E2  { backpatch ( E1.truelist, M.quad); 
   E.truelist : = E2.truelist; 
   E.falselist : = merge(E1.falselist, E2.falselist)} 

(3) E not E1  { E.truelist : = E1.falselist; 
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   E.falselist : = E1.truelist; } 

(4) E ( E1)  { E.truelist : = E1.truelist; 
   E.falselist : = E1.falselist; } 

(5) E id1relop id2  { E.truelist : = makelist (nextquad); 
  E.falselist : = makelist(nextquad + 1); 
  emit(‘if’id1.place relop.op id2.place ‘goto_’) 
  emit(‘goto_’) } 

(6) E true { E.truelist : = makelist(nextquad); 
  emit(‘goto_’) } 

(7) E false { E.falselist : = makelist(nextquad); 
  emit(‘goto_’) } 

(8) M ɛ { M.quad : = nextquad } 
 
Flow-of-Control Statements: 
 
A translation scheme is developed for statements generated by the following grammar : 
 
1. S if E then S   
2. | ifEthenSelseS  
3. | whileEdoS  
4. | beginLend  
5. | A  
6. L  L ; S   
7. | S 

Here S denotes a statement, L a statement list, A an assignment statement, and E a boolean 
expression. We make the tacit assumption that the code that follows a given statement in 
execution also follows it physically in the quadruple array. Else, an explicit jump must be 
provided. 
Scheme to  implement the Translation: 

The  nonterminal E has two attributes E.truelist and E.falselist. L and S also need a list of 
unfilled quadruples  that must eventually be completed by backpatching. These lists are pointed 
to by the attributes L..nextlist and S.nextlist. S.nextlist is a pointer to a list of all conditional and 
unconditional  jumps to the quadruple following the statement S in execution order, and 
L.nextlist is defined similarly. 
The semantic  rules for the revised grammar are as follows: 
E S if E then M1 S1 N else M2 S2  

{ backpatch (E.truelist, M1.quad);   
 backpatch (E.falselist, M2.quad);  
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 S.nextlist : = merge (S1.nextlist, merge (N.nextlist, S2.nextlist)) } 
 
Then  backpatch  the jumps when E is true to the quadruple M1.quad, which is the beginning of 
the code for S1. Similarly, we backpatch jumps when E is false to go to the beginning of the code 
for S2. The list S.nextlist includes all jumps out of S1 and S2, as well as the jump generated by N. 
 

(2) N ɛ { N.nextlist : = makelist( nextquad ); 
  emit(‘goto_’) } 

(3) M ɛ { M.quad : = nextquad } 

(4) S if E then MS1 { backpatch( E.truelist, M.quad); 
  S.nextlist : = merge( E.falselist, S1.nextlist) } 

(5) S while M1 E do M2 S1 { backpatch( S1.nextlist, M1.quad); 
  backpatch( E.truelist, M2.quad); 
  S.nextlist : = E.falselist 
  emit( ‘goto’ M1.quad ) } 

(6) S begin L end { S.nextlist : = L.nextlist }  
 (7)  SA { S.nextlist : = nil } 

 
The assignment S.nextlist : = nil initializes S.nextlist to an empty list. 
 

(8) L  L1 ; M S { backpatch( L1.nextlist, M.quad); 
  L.nextlist : = S.nextlist } 

 
The statement following L1 in order of execution is the beginning of S. Thus the L1.nextlist list is 
backpatched to the beginning of the code for S, which is given by M.quad. 
 

(9)  LS { L.nextlist : = S.nextlist } 
 
3.10 PROCEDURE CALLS 

The procedure is such an important and frequently used programming construct that it is 
imperative for a compiler to generate good code for procedure calls and returns. The run-time 
routines that  handle procedure argument passing, calls and returns are part of the run-time 
support package. 
Let us consider  a grammar for a simple procedure call statement 

� S call id( Elist )  
� Elist  Elist , E   
� Elist E  

Calling Sequences: 
The  translation for a call includes a calling sequence, a sequence of actions taken on entry to 

and exit from  each procedure. The falling are the actions that take place in a calling sequence : 
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 When  a procedure call occurs, space must be allocated for the activation record of the 
called  procedure. 

 The arguments  of the called procedure must be evaluated and made available to the 
called procedure in a known place. 

 Environment pointers must be established to enable the called procedure to access data in 
enclosing blocks. 

 The state of the calling procedure must be saved so it can resume execution after the call. 
 Also saved in a known place is the return address, the location to which the called routine 

must transfer after it is finished. 
 Finally a jump to the beginning of the code for the called procedure must be 

generated. For example, consider the following syntax-directed translation 


 S call id( Elist )  
{ for each item p on queuedo  

emit (‘ param’ p ); 
 

emit (‘call’ id.place) }  
(2) Elist  Elist , E  

{ append E.place to the end of queue }  
(3) Elist  E  

{ initialize queue to contain only E.place }  
 Here, the code for S is the code for Elist, which evaluates the arguments, followed by a 

param pstatement for each argument, followed by a call statement.
 queue is emptied and then gets a single pointer to the symbol table location for the namethat 

denotes the value of E. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


