Name:	Utech
Roll No.:	
Invigilator's Signature :	•••••

CS/B.OPTM/SEM-1/BO-101/2012-13 2012

GEOMETRICAL OPTICS - (OPTICS-I)

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

		Choose the	correct alterna	atives for th	ne followin
--	--	------------	-----------------	---------------	-------------

 $10 \times 1 = 10$

- i) The refractive index of water with respect to air is
 - a) 1.30

b) 1.31

c) 1.33

- d) 1.32.
- ii) The wave theory of light was proposed by
 - a) Newton
- b) Planck
- c) Huygens
- d) Brewster.

1208 [Turn over

CS/B.OPTM/SEM-1/BO-101/2012-13

iii)	Velo	ocities of light in diamor	nd, gl	ass and water decrease			
	in w	which of the following orders ?					
	a)	Water > Glass > Diamond					
	b)	Diamond > Glass > W	ater				
	c)	Diamond > Water > G	lass				
	d)	Water > Diamond > Glass.					
iv)	Whe	en the focal length is infinite, the power will be					
ŕ	a)	zero	b)	infinite			
	c)	100	d)	10.			
v)	,		,				
• • •	Convex lens acts like a reading glass, when object is kept						
	a)	at focus					
	b)	at 2F					
	c)	in between $2F$ and F					
	d)	in between F and opti	cal c	entre.			
vi)	Geo	eometrical Optics is also known as					
	a)	Geometry optics	b)	Co-ordinate optics			
	c)	Ray optics	d)	Photon optics.			
vii)		Convex lens is used as slide projector when object is					
	kep		• .				
	a)	at 2F	b)	in between F and 2F			
•••	c)	at F	d)	none of these.			
viii)		Optical fibre works on the principle of					
	a)	refraction	b)	total internal reflection			
		reflection		none of these.			
ix)	If two thin lenses of powers P_1 and P_2 are kept in						
	contact then equivalent power is						
		$P_1 \times P_2$		$P_1 - P_2$			
	c)	$P_1 + P_2$	d)	none of these.			

- x) Total internal reflection occurs when light travels from
 - a) rarer to denser medium
 - b) denser to rarer medium
 - c) both (a) and (b)
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Define optical fibre. State the uses of optical fibre.
- 3. Write a short note on cardinal points of thick lens system.
- 4. What is total internal reflection? Mention condition of total internal reflection. 2+3
- 5. Write a short note on astigmatism.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 6. What is a lens? Obtain lens makers' formula. Deduce the formula to find out the equivalent focal length and power when two convex lenses are mounted coaxially to form a combination. 2 + 5 + 8
- 7. a) Derive vergence equation for refraction at a curved surface.
 - b) Obtain lens makers' formula for a thin lens. 7 + 8

CS/B.OPTM/SEM-1/BO-101/2012-13

8.

a)

b) An image of size d_1 is formed on a screen by a convex lens. By moving the lens an image of size d_2 is formed when the object and the screen are fixed. Show that the size d of the object is given by

$$d = (d_1 d_2)^{1/2}$$
.

c) A convex lens of glass (n = 1.5) has radii of curvature 15 cm and 30 cm. Find its focal length in air. What will be its focal length in water of refractive index 4/3?

$$5 + 5 + 5$$

- 9. a) Write the statement of the Fermat's principle.
 - b) Prove Snell's law of refraction in the light of Fermat's principle for a plane surface.
 - c) For a concave spherical surface find out the vergence equation. 2 + 7 + 6
- 10. a) Why is matrix method useful in optics?
 - b) Differentiate between the following:
 - i) Step index and graded index fibre
 - ii) Single mode and multimode fibre.
 - c) With sketch define
 - i) Critical angle
 - ii) Angle of acceptance.
 - d) A fibre cable has an acceptance angle of 30° and a core index of refraction of 1.4. Calculate the refractive index of the cladding. 3 + (3 + 3) + 3 + 3

1208 4