	<u>Uitech</u>
Name :	A
Roll No.:	A Description and Explana
Invigilator's Signature :	

CS/BBA(H)BIRM/BSCM/SEM-2/BBA-202/2013 2013 MATHEMATICS-II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) The value of the

$$\lim_{x \to 0} \frac{1}{(1+x)^x}$$
 is equal to

a) 1

b) *e*

c) 0


- d) ∞ .
- ii) The curve y = |x| is symmetric about
 - a) x axis
- b) y axis

c) y = x

d) none of these.

2052

CS/BBA(H)BIRM/BSCM/SEM-2/BBA-202/2013

- a) x = 4, y = 1 b) x = 3, y = 2
- c) x = 1, y = 4
- d) x = 0, y = 5.
- iv) A function f(x) is said to be odd if f(-x) is equal to
 - a) f(x)

- b) -f(x)
- c) -f(-x)
- d) none of these.
- The rank of the matrix v)

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{array}\right) \text{ is }$$

a) 1

2 b)

c) 3

- d) None of these.
- The parametric coordinates of the parabola vi)

$$y^2 = 4ax$$
 are

- a) $(at^2, 2at)$
- b) $(-at^2, -2at)$
- c) $(-at^2, 2at)$ d) none of these.
- vii) The function $f(x, y) = \frac{x^3 + y^3}{x^2 + y^2}$ is homogeneous of

degree

1 a)

b)

c) 3 d) none of these. a) true

b) false.

If M is a square matrix of order 3, then its transpose is ix) a matrix of order

 2×3 a)

b) 2×2

c) 3×3 d) 3×2 .

The value of $\frac{d}{dx}(\alpha^x)$ is equal to x)

a) a^x

b) $a^x \log_e a$

- c) $\log_e a$
- d) $x a^{x-1}$.

The value of $\int \frac{\mathrm{d}x}{a^2 - x^2}$ is

- a) $\frac{1}{2a} \log \left| \frac{x-a}{x+a} \right|$ b) $\frac{1}{2a} \log \left| \frac{x+a}{x-a} \right|$
- c) $\frac{1}{2a} \log \left| \frac{a+x}{a-x} \right|$ d) none of these.

xii) If A is an orthogonal matrix, then det A = |A| is

1 only a)

b) -1 only

c) ± 1 d) 0.

xiii) If
$$x = 4t$$
, $y = 2t^2$, then $\frac{d^2y}{dx^2}$ is

a)

b) 4t

d) none of these.

xiv) If e is the eccentricity of a hyperbola, then

e = 0a)

b) e = 1

c) e > 1

d) e < 1.

xv) If $A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$, then AB is equal to

- a) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$
- $c) \quad \left(\begin{array}{cc} 6 & 0 \\ 0 & 0 \end{array}\right)$
- d) $\begin{pmatrix} 0 & 0 \\ 0 & 6 \end{pmatrix}$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

Solve by 2. Cramer's rule the following simultaneous equations:

$$x + y = 0$$

$$y + z = 1$$

$$z + x = -1$$

2052

3. If ω is imaginary cube root of 1, show that $a + b\omega + c\omega^2$ is a factor of

$$\Delta = \left| \begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array} \right|.$$

- 4. Find the points on the curve $y = x + \frac{1}{x}$ at which the tangents to the curve are parallel to x -axis.
- 5. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx.$
- 6. Evaluate $\lim_{x \to 1} (1-x) \tan \frac{x\pi}{2}$.
- 7. Evaluate $\int_0^1 e^x dx$ as the limit of a sum.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Find the coordinates of the foci of the ellipse

$$3x^2 + 4y^2 = 12$$

b) Without expanding show that

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (b-c)(c-a)(a-b).$$

CS/BBA(H)BIRM/BSCM/SEM-2/BBA-202/2013

c) If
$$y = (\cos^{-1} x)^2$$
, show that
$$(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 2.$$

- 9. a) Find the equation of the parabola where vertex is at the origin, the axis on the y-axis and which passes through the point (6, –3).
 - b) If $f(x) = (x 1) e^x + 1$, show that f(x) is an increasing function of x for all positive values of x.
 - c) Find the area bounded by the ellipse $4x^2 + 9y^2 = 36$ and the *x* -axis.
- 10. a) Examine whether the following matrix

$$A = \frac{1}{3} \begin{pmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

is orthogonal.

- b) Show that all rectangles of a given perimeter, the square has the maximum area.
- c) Differentiate

$$\sin^{-1}\frac{2x}{1+x^2}$$
 with respect to $\tan^{-1}\frac{2x}{1-x^2}$.

2052 6

- 11. a) State and prove Euler's theorem for a homogeneous function of two variables.
 - b) Integrate $\cos^2 x$ with respect to x.
 - c) Evaluate:

$$\lim_{x \to \infty} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} \right).$$

- 12. a) Find the equation of the ellipse whose latus rectum is 5 and whose eccentricity is $\frac{2}{3}$, the axes of the ellipse being the coordinate axes.
 - b) Examine the continuity of the following function f(x) at x = 0, where f(x) is defined by

$$f(x) = \frac{\sin 3x}{2x}, \text{ for } x \neq 0$$
$$= \frac{2}{3}, \text{ for } x = 0$$

c) If a function f(x) is defined by

$$f(x) = \frac{1-x}{1+x}$$
, find $f\left(f\left(\frac{1}{x}\right)\right)$, for $x \neq 0$.