Roll No

EX - 302

B.E. III Semester

Examination, June 2016

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.

- ii) All parts of each question are to be attempted at one place.
- iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
- iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- 1. a) Write the statement of Divergence theorem.
 - b) State Gauss law.
 - c) Give the physical significance of Curl.
 - d) Transform the vector field $\overline{w} = 10\overline{a}_x 8\overline{a}_y + 6\overline{a}_z$ to cylindrical co-ordinate system, at point p(10, -8, 6).

OR

Transform the vector field $F = 2r\cos\phi a_r + a_\phi$ into Cartesian co-ordinates and evaluate it at P(4, -2, 3). Also find a unit vector $\mathbf{a_F}$ at P.

Unit - II

- a) What is an electric dipole and its dipole moment?
 - b) Define perfect conductor.
 - Define magnetic flux, flux density and magnetic field intensity.
 - d) A point charge of 6nc is located at the origin in free space.
 Find V_p if point P is located at (0.2, -0.4, 0.4) and
 - i) V = 0 at infinity
 - ii) V = 0 at (1, 0, 0)

iii) V = 20 volts at (-0.5, 1, -1)

OR

Verify that the expression for the potential due to an electric dipole satisfies the Laplace equation.

Unit - III

- a) State Ampere's circuital law as applied to time varying magnetic field.
 - b) State Biot Savart's law.
 - Derive the expression for force between two current carrying wires.
 - d) Derive the expression for ohm's law in point form and continuity equation.

OR

Calculate the magnetic flux density produced by a current loop of radius 'R' on the loop axis when the loop is carrying a current ' Γ ' and situated in air.

Unit - IV

- a) Derive an expression for induction of the solenoid and toroid.
 - b) Write the statement of Faraday's law.
 - What is the difference between magnetic vector potential and magnetic scalar potential.
 - d) Write down and explain Maxwell's equations in point form and integral form.

OR

Derive the expression for the energy stored in a magnetic field.

Unit - V

- 5. a) State poynting theorem.
 - b) Define skin depth.
 - c) Derive the EM wave equation.
 - d) What is meant by polarization of a wave? When is a wave linearly polarized? When is a wave circularly polarized? OR

Write a short note on uniform plane wave in dielectrics.
