Time: 3 Hours

B. Tech Degree IV Semester Examination April 2011

CS/IT 404 AUTOMATA LANGUAGES AND COMPUTATION

PART - A

(2006 Scheme)

Maximum Marks: 100

		(Answer <u>ALL</u> questions)	
		(Allswei ALL questions)	$(8 \times 5 = 40)$
I.	(a) (b) (c) (d) (e) (f) (g) (h)	State the relation between Regular Languages and Finite Automata. State Myhill-Nerode theorem. Define Chomsky Normal Form and Greibach Normal Form. State Pumping Lemma for context free languages. Explain the working of a Standard Turing Machine. Explain Multitrack Turing Machine. What are Recursive and Recursively Enumerable Languages? Explain Chomsky Hierarchy.	
		PART – B	(4 v 15 – 60)
			$(4 \times 15 = 60)$
II.	(a)	Define a DFA. Construct a DFA for the language. $L = \{w/w \text{ has odd number } \}$	
		of 1's and even number of $0's$	(8)
	(b)	Prove the equivalence of NFA and DFA. OR	(7)
III.	(a)	Prove that the following languages are not regular using Pumping Lemma:	
		(i) $\left\{o^n 1^m 2^n \mid n, m \ge 1\right\}$	
		(ii) $\left\{a^n b^{2n} \mid n \ge 1\right\}.$	(6)
	(b)	Construct an NFA for the regular expression $(a+b)^*a bb$.	(4)
	(c)	Differentiate Moore Machine and Mealy Machine.	(5)
IV.	(a)	Define Ambiguous Grammar. Show that the following grammar is ambiguous : $E \to E + E \mid E * E \mid (E) \mid I$	
		$E \rightarrow a \mid b \mid c$	(8)
	(b)	Convert the following CFG to GNF: $S \rightarrow ab Sb \mid aa$	(7)
V.		OR ()	
*•	(a)	Find a CFG that generates the language $L = \{a^n b^{n+1} \mid n \ge 0\}$.	(6)
	(b)	Define a PDA. Design a PDA to accept the language $L = \{ww^R \mid w \in \{0+1\}^*\}$.	(9)
VI.	(a)	Design a Turing Machine that accepts the language $L = \{a^n b^n \mid n \ge 0\}$.	(7)
	(b)	Write short notes on the following –	(7)
		(i) Non-deterministic TM (ii) Universal TM OR	(8)
VII.	(a)	Design a Turing Machine that recognizes the language	4-1
		$L = \left\{ wcw \mid w \text{ in } \left(a + b \right)^{+} \right\}.$	(8)
	(b)	Explain how a Turing Machine can simulate subroutines.	(7)
VIII.	(a)	Show that if L is Recursive, so is \overline{L} .	(6)
	(b)	State Halting Problem of Turing Machine. Show that the Halting Problem of Turing Machine is undecidable.	(9)
IX.	(a)	OR Define Linear Bounded Automata.	(5)
	(b)	Prove that if L has a Regular grammar, then L is a regular set. ***	(10)