

CS/MCA/SEM-3/M(MCA)-301/2011-12 2011
 STATISTICS AND NUMERICAL TECHNIQUES

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as
far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) $\quad E^{-1}$ is equivalent to
a) $1-\nabla$
b) $1+\Delta$
c) $1-\nabla$
d) none of these.
ii) if $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$, the X and Y are
a) mutually exclusive
b) uncorrelated
c) impossible events
d) none of these.
iii) If E^{c} is the complement of the event E then
a) $\quad P\left(E^{c}\right)=1-P(E)$
b) $\quad P\left(E^{c}\right)=P(E)$
c) $\quad P\left(E^{c}\right)=1+P(E)$
d) none of these.
iv) For a binomial distribution
a) Mean > Variance
b) Mean = Variance
c) Mean < Variance
d) none of these.
v) If $f(x)$ is a polynomial of degree n, then $\Delta^{n} f(x)$ is
a) 0
b) constant
c) 1
d) none of these.
vi) Romberg's method is based on the error in
a) Trapezoidal rule
b) Simpson's $1 / 3$ rd rule
c) Weddle's rule
d) none of these.
vii) Order of convergence of Newton-Raphson method is
a) 0
b) 2
c) 1
d) none of these.
viii) Normal distribution is
a) unimodal
b)
bimodat ${ }^{2}$ vomusinim
c) trimodal
d) none of these.
ix) Order of error in Simpson's $1 / 3$ rd rule is
a) $\quad h^{2}$
b) h^{4}
c) 1
d) none of these.
x) Condition for convergence of Fixed-point iteration method to solve the equation $f(x)=0$ in $[a, b]$ is that
a) $\phi^{\prime}(x)<1$
b) $\phi^{\prime}(x)>1$
c) $\quad \phi^{\prime}(x)=1$
d) $\phi^{\prime}(x) \leq 1$
in $[a, b]$ where $f(x)=0$ can be written as $\phi(x)=x$.
xi) The formula of the area of a trapezium whose length of the parallel sides are a, b and the distance between them is h is
a) $\quad \frac{h}{2}(a+b)$
b) $\frac{h}{2}+a+b$
c) $\quad h(a+b)$
d) $h+a+b$.
xii) The method of bisection for solving equation $f(x)=0$ in $[a, b]$ is based on
a) Intermediate value theorem
b) MVT of integral calculus
c) MVT of differential calculus
d) Fundamental theorem of Algebra.

a
a) area
b) volume
c) surface area
d) volume and surface area both under the curve $y=f(x)$ in $[a, b]$.
xiv) In Newton's forward and backward interpolation formula the points are
a) equally spaced
b) unequally spaced
c) both of the previous
d) none of the previous.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Prove that $P(A \cup B)=P(A)+P(B)$, if A and B are disjoint events.
3. The probabilities of X, Y and Z being managers are in the ratio $4: 2: 3$ respectively. The probabilities that the bonus scheme will be introduced if X, Y, Z become managers are $\frac{3}{10}, \frac{1}{2}, \frac{4}{5}$ respectively.
i) What is the probability that bonus scheme will be introduced?
ii) If the bonus scheme has been introduced, what is the probability that the manager appointed was Y ?

CS/MCA/SEM-3/M(MCA)-301/201-12 0 5 intervals.
 5. Evaluate $\int^{2} \log x \mathrm{~d} x$ using Simpson's $1 / 3$ rd rule using 1
 5 intervals.
 6. Distinguish between absolute error and relative error with example.

GROUP - C

(Long Answer Type Guestions)
Answer any three of the following. $3 \times 15=45$
7. a) Use Newton-Raphson method to find a positive root of $e^{x}=3 x$ correct to four decimal places.
b) What are the advantages and disadvantages of NewtonRaphson method?
c) State and prove Bayes' theorem.

$$
6+4+5
$$

8. a) Find $\Delta^{2} f(x)$ where $f(x)=3 x^{4}+8 x^{2}+5 x+7$ by taking $h=1$.
b) Apply Simpson's $1 / 3$ rd rule to find $\int_{0}^{\pi / 2} \cos x d x$ by dividing the range on integration into 6 subintervals.
c) Prove that if E_{1} and E_{2} are statistically independent, then $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right) . \quad 6+6+3$
9. a) Discuss the convergence of fixed point iteration
b) Prove that if $\rho_{x y}$ is the Pearson correlation coefficient between the random variables X and Y, then $-1 \leq \rho_{x y} \leq$ 1.
c) Apply Newton's forward interpolation to find $f(x)$ at $x=2 \cdot 5$ from the following table :

x	2	3	4	5	6
$f(x)$	1.456	1.689	1.992	2.010	2.225

$$
5+5+5
$$

10. a) Find $\sqrt{45}$ usng Newton-Raphson method.
b) Use Gauss-Jordan method to solve
$p+2 q+r-s=-2$
$2 p+3 q-r+2 s=7$
$p+q+3 r-2 s=-6$
$p+q+r+x=2$.
c) Prove that if $X \sim \operatorname{Binomial}(n, p)$ then $E(X)=n p$.

$$
5+5+5
$$

11. a) Derive the expression of error in the composite trapezoidal rule.
b) Apply Runge-Kutta method of order 4 to solve $\frac{d y}{d x}=x+$ y, where $y(0)=1$ at $x=0 \cdot 1$ and $0 \cdot 2$. $7+8$

CS/MCA/SEM-3/M(MCA)-301/20®1-12
 Unrest

12. a) Apply LU factorization to find the inverse o
$\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9\end{array}\right]$
b) Prove that for a normal distribution :

Mean $=$ Median $=$ Mode
c) Fit an approximating polynomial to the following data:

x	0	3	4
$f(x)$	$2 \cdot 12$	$4 \cdot 34$	$3 \cdot 19$

