B.Tech. 3rd/Semester Exam., 2013

MATERIAL SCIENCE

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven) :

2×7=14

- (a) Which is closest to the purest form of iron?
 - (i) Cast iron
 - (ii) Wrought-iron
 - (iii) Grey iron
 - (iv) Mild steel
- (b) The process of isothermal transformation to form bainite in steel, is known as
 - (i) austempering
 - (ii) austeniting
 - (iii) barkerising
 - (iv) polymerization

(Turn Over)

- (c) Which of the following is not a permanent magnetic material?
 - (i) Chromium steel
 - (ii) Silicon iron
 - (iii) Cobalt steel
 - (iv) Alnico
- (d) Which one of the following materials is viscoelastic in nature?
 - (i) Nylon
 - (ii) Glass
 - (iii) Rubber
 - (iv) Graphite
- (e) If the structure of a sample consists of pearlite, cementite and free carbon, the sample may be
 - (i) cast iron
 - (ii) alloy steel
 - (iii) dead mild steel
 - (iv) eutectoid steel
- (f) Pearlite is obtained when steel is
 - (i) quenched in oil
 - (ii) cooled in still air
 - (iii) slowly cooled in furnace
 - (iv) quenched in water

					10	
<i>(g)</i>	A material having different properties in different directions, is known as	2.	(a)	Give the classification of ceramic		
	(ii) isotropic (iii) amorphous (iii) austenitic			materials, organic materials, electrical materials and magnetic materials with their properties and applications.	8	
	(iv) anisotropic		(b)	Write short notes on:	6	
(h)	Temperating of hardened steel is done to increase its (i) ductility (ii) grain size			(ii) Nanomaterials (iii) Biomaterials (iii) Optical fibre	,	
	(iii) surface condition (iv) carbon content	3.	(a)	What is a 'phase diagram'? How is it classified? What useful information does it provide?	6	
(i)	The fatigue strength of materials increases (i) with temperature (ii) by providing scratches on the surface		(b)			
	(iii) by providing notches (iv) by under-stressing the material		(c)	Discuss the Hume-Rothery rules for alloy formation.	4	
.(j)	The capacity of a metal to exhibit considerable elastic recovery upon release, is known as (i) toughness — (ii) resilience		dis- of wh	Draw the iron-carbon phase diagram and discuss briefly the structure and properties of steel having 0.83% and 0.40% carbon when cooled from 1000 °C to room temperature.		
	(iii) hardness	te				
	(iv) stiffness	5.	(a)	0		
-13	50/109 (Turn Over)	1		Discuss all the transformation with the rate of cooling.	8	

	(b)	Why continuous cooling of plain carbon steel does not show bainite in its microstructure?	6
6.	(a)	What effect does a change in heating or cooling rate have upon the transformation temperature in steel?	6
	(b)	Calculate the thickness of micro- constituents present in pearlite if density of ferrite and cementite is 7.76 gm/cc and 7.66 gm/cc respectively.	4
	(c)		4
7.	(a)	What are the various types of annealing? Where are they used?	6
	(b)	What is the major difference in the purpose of annealing and normalizing?	4
	(c)	"Hardening of steel is always followed by tempering." Is it true or false? If true, give reasons.	4
8.	(a)	What are the different types of composite materials available? Give their suitable examples with applications.	6

	(b)	What are the most important rules for designing composite parts?	4		
	(c)	Write the applications of cemented carbide composite.	4		
9.	Dis	tinguish the following:	14		
	(a) Plain carbon steel and Alloy steel				
	(b)	White cast iron and Malleable cast iron			
	(c)	Grey cast iron and Spheroidal grey iron			
	(d)	Euterics and Eutectoids			
