Con. 5059-09. Discrete Time Signal Processing a Application (3 Hours) Total Marks: 100

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions of the remaining.
 - Solve any four questions of the following:—

 (a) The impulse response of a relaxed LTI system is h(n) = aⁿu(n), for | a | < 1.

Determine value of unit step response of this system as $n \to \infty$.

- (b) Given the sequences $x_1(n) = \{1, 2, 3, 1\}$ and $x_2(n) = \{4, 3, 2, 2\}$. Find $x_3(n)$ such that $X_3(K) = X_1(K) \cdot X_2(K)$.
- (c) Find 4-point DFT of a discrete-time sequence

$$x(n) = \cos\left(\frac{n\pi}{2}\right) \text{ using DIT-FFT.}$$

(d) Determine the steady-state response of the system,

$$y(n) = \frac{1}{2} [x(n) - x(n-2)]$$
 to the input

$$x(n) = 5 + 3 \cos \left(\frac{\pi n}{2} + 60^{\circ}\right) + 4 \sin (\pi n + 45^{\circ}) - \infty < n < \infty$$

- (e) State whether true or false and justify: The approximation of derivatives method of designing IIR digital filter is not suitable for designing highpass filters.
- 2. (a) The sequence $x(n) = 4\delta(n) + 3\delta(n-1) + 2\delta(n-2) + \delta(n-3)$ has 8-point DFT X(k).

 Determine the sequence—
 - (i) y(n) that has 8-point DFT $Y(K) = W_8^{4k} X(K)$ and
 - (ii) w(n) that has 8-point DFT W(K) = 0.5 [X(K) + X(- K)] using DFT properties only.
 - (b) Compute 8-point DFT of the following sequence using DIF-FFT.

Starting from suitable Butterworth lowness pro
$$(8 \ge n \ge 0)$$
, $(10 \le n \le 3)$ and $(10 \le n \le 1)$ bandpass $(10 \le n \le 1)$ and $(10 \le n \le 1)$ bandpass $(10 \le n \le 1)$ bandpass

Knowing this result, compute the DFT of the sequence, $x_1(n) = \begin{cases} 1 & n = 0 \\ 0 & 1 \le n \le 4, \end{cases}$

using DFT propertries only and not otherwise.

- 3. (a) Show that the energy of a real-valued energy signal is equal to the sum of the energies of its even and odd components.
 - (b) Evaluate the magnitude and phase response of the system of notion is a solution of the system of notion is a solution of the system of notion is a solution of the system.

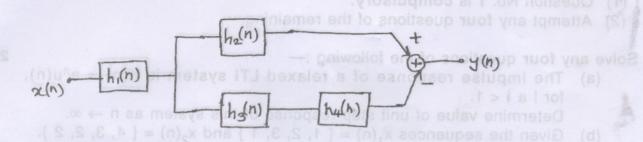
$$y(n) = x(n) + 0.9x (n - 2) - 0.4y (n - 2) at \omega = 0, \frac{\pi}{2}, \pi$$

[TURN OVER

20

12

(c) Consider the interconnection of LTI systems as shown in following Figure. 10



If
$$h_1(n) = \begin{cases} \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \\ \uparrow \end{cases}$$
, $h_2(n) = h_3(n) = (n+1) u(n)$ for $0 \le n \le 3$ and

 $h_4(n) = \delta(n-2)$ then determine the impulse response h(n) and the response of this system to the input, $x(n) = \delta(n+2) + 3\delta(n-1) - 4\delta(n-3)$.

(a) Determine the coefficients of a linear phase FIR filter having a symmetric 10 impulse response and a frequency response that satisfies the conditions given below using Frequency Sampling method.

$$H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & \text{; } k = 0,1,2,3 \\ 0 & \text{; } k = 4,5,6,7 \end{cases}$$

(b) Obtain the direct from I and direct form II realization the system given 10 below. If (8 - 1) (8 - 1) (8 - 1) (8 - 1) (9 - 1) (9 - 1) (9 - 1) (10 - 1) (

$$y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)$$

(a) Design an equivalent digital filter from an analog filter using impulse 10 invariance method if—

H(s) =
$$\frac{4}{(s+1)(s^2+4s+5)}$$
. Assume T = 0.5 sec

(b) Starting from suitable Butterworth lowpass prototype filter, obtain digital bandpass 10 filter using bilinear z-transformation method, satisfying specifications given below:

Pass band: 200 - 300 Hz, sampling frequency: 2 kHz, Filter order, N: 2.

 Design a zero phase FIR lowpass filter using Kaiser Window Function to satisfy following specifications: A_p ≤ 0·1 dB at 20 rad/sec and A_s ≥ 44 dB for 30 rad/sec.

Assume sampling frequency of 100 rad/sec.

Design an analog filter using Butterworth, Chebyshev and inverse Chebyshev 20 approximation to meet following specifications:

 $A_p \le 1$ dB for $\Omega_p \le 4$ rad/s and $A_s \ge 20$ dB for $\Omega_s \ge 8$ rad/s.