\qquad

BE - 401

B.E. IV Semester Examination, December 2014 Mathematics - III
 (Common for all Branches)
 Time : Three Hours
 Maximum Marks :70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
ii) All parts of each question are to be attempted at one place.
iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
iv) Except numericals, Derivation, Design and Drawing etc.

1. a) Show that $w=e^{z}$ is an analytic function and determine $f^{\prime}(z)$.
b) Evaluate $\int_{C} \frac{z^{2}-z+1}{z-1} d z$, where C is the circle $|z|=1$.
c) Evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$, where C is the circle $|z|=2$.
d) If $f(z)$ is a regular function of z prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.

OR
If $f(\xi)=\int_{C} \frac{3 z^{2}+7 z+1}{z-\xi} d z$, where C is the circle $x^{2}+y^{2}=4$, find the values of $f(3), f^{\prime}(1-i)$ and $f^{\prime \prime}(1-i)$.
2. a) Define algebraic and transcendental equations.
b) Find the smallest positive root of the equation $x^{3}-2 x+0.5=0$ by Newton-Raphson method.
c) The equation $x^{6}-x^{4}-x^{3}-1=0$, has one real root between 1.4 and 1.5. Find the route to four decimal places by the method of False-Position.
d) Solve the following system of equations $8 x-y+z=18 ; 2 x+5 y-2 z=3 ; x+2 y-3 z=-6$ using Gauss-Seidel iterative method.

OR

Apply Gauss-Jordan method to find the solution of the following system of equations: $10 x+y+z=12 ; 2 x+10 y+z=13, x+y+5 z=7$. http://www.rgpvonline.com
3. a) Define interpolation and write the Newton's forward and Backward interpolation formula.
b) Find the cubic polynomial which takes the following values:

x	$:$	0	1	2	3
$f(x)$	$:$	1	2	1	10

c) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using Weddle's rule.
d) The following table gives the normal weights of babies during the first 12 months of life.

Age in months: $\begin{array}{lllllll}0 & 2 & 5 & 8 & 10 & 12\end{array}$
Weights in lbs: $\begin{array}{lllllll}71 / 2 & 101 / 4 & 15 & 16 & 18 & 21\end{array}$
Estimate the weight of the baby at the age of 7 months.
OR
Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ at $x=6$, given that

x	$:$	4.5	5.0	5.5	6.0	6.5	7.0	7.5
$y=f(x)$	$:$	9.69	12.90	16.71	21.18	26.37	32.34	39.15

4. a) Use Picards method to approximate y when $x=0.1$ given that $y=1$, when $x=0$ and $\frac{d y}{d x}=\frac{y-x}{y+x}$.
b) Write the steps of Runge-Kutta method.
c) From the following data, obtain the value of the correlation coefficient: $n=10, \Sigma x=140$, $\Sigma y=150, \Sigma(x-10)^{2}=180, \Sigma(y-15)^{2}=215$ and $\Sigma(x-10)(y-15)=60$.
d) By the method of least squares, find the curve $y=a x+b x^{2}$, that best fits the following data:
$x: \begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
$y: \begin{array}{llllll}1.8 & 5.1 & 8.9 & 14.1 & 19.8\end{array}$

OR

Given $\frac{d y}{d x}=1+\frac{y}{x}, y=2$ at $x=1$. Find approximate value of y at $x=1.4$ by taking step size $h=0.2$, apply modified Euler's method. http://www.rgpvonline.com
5. a) Find the mean of the binomial distribution.
b) Given A and B two events with $P(A \cup B)=\frac{7}{8}, P(A \cap B)=\frac{1}{4}$ and $P(A \cap \bar{B})=\frac{5}{8}$. Find $P(A)$ and $P(B)$.
c) If the probability of a bad reaction from certain injection is 0.001 . Determine the chance that out of 2000 individuals more than two will get a bad reaction.
d) Fit a Poisson distribution for the following data and test the goodness of fit, given that $\chi^{2}=0.05=7.815$ for 3 d.f.

$x:$	0	1	2	3	4
$f:$	122	60	15	2	1

OR

The life time of a certain kind of battery is a random variable, which as an exponential distribution with a mean of 200 hrs . Find the probability that such a battery will last. (i) At most 100 hrs . and (ii) last any-where from 400 to 600 hrs .

