

## 2012

## **NUMERICAL METHODS**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

## **GROUP - A**

## (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

$$10 \times 1 = 10$$

- i) If  $\frac{5}{3}$  is approximated to 1.6667, then absolute error is
  - a) 0.000033
- b) 0.000043
- c) 0.000034
- d) none of these.
- ii) If  $f(x) = \frac{1}{x^2}$  then the divided difference f(a, b) is
  - a)  $\frac{(a+b)}{(ab)^2}$
- b)  $\frac{(a-b)}{(ab)^2}$
- c)  $\frac{1}{a^2} \frac{1}{h^2}$
- $d) \qquad \frac{1}{a^2 b^2}.$



- iii) The value of  $\frac{\Delta^2}{E}(x^3)$  is
  - a) *x*

b) 6*x* 

c) 3*x* 

- d)  $x^2$ .
- iv) If  $\frac{dy}{dx} = x + y$  and y(1) = 0, then y(1. 1) according to

Euler's method is, h = 0.1 (say),

a) 0·1

b) 0·3

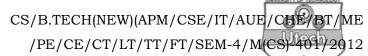
c) 0.5

- d) 0.9.
- v) If  $y_0 = 2$ ,  $y_1 = 4$ ,  $y_2 = 8$ ,  $y_4 = 32$  then  $y_3$  is equal to
  - a) 5

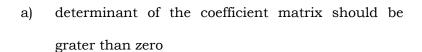
b) 15

c) 6

- d) 16·5.
- vi) The order of h in the error expression of Trapezoidal rule


is

a) 1


b) 2

c) 3

- d) 4.
- vii) Regula-Falsi method is
  - a) conditionally convergent
  - b) linearly convergent
  - c) divergent
  - d) none of these.



viii) Pivoting is very much essential because



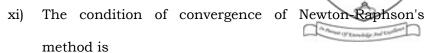
- b) pivot element should not have very large value compared to the elements of the matrix
- c) it reduces the possibility of division by zero
- d) change of convergence is higher.
- Which of the following is true? ix)

a) 
$$\Delta^n x^n = (n+1)$$

$$\Delta^n x^n = (n+1)!$$
 b)  $\Delta^n x^n = n!$ 

c) 
$$\Delta^n x^n = 0$$

d) 
$$\Delta^n x^n = n$$
.


An  $n \times n$  matrix A is said to be diagonally dominant if x)

a) 
$$\left|a_{ii}\right| \ge \sum_{\substack{j=1 \ i \ne j}}^{n} \left|a_{ij}\right|$$
 b)  $\left|a_{ii}\right| \le \sum_{\substack{j=1 \ i \ne j}}^{n} \left|a_{ij}\right|$ 

b) 
$$\left| a_{ii} \right| \leq \sum_{\substack{j=1 \ i \neq i}}^{n} \left| a_{ij} \right|$$

c) 
$$\left|a_{ii}\right| > \sum_{\substack{j=1 \ i \neq i}}^{n} \left|a_{ij}\right|$$

c) 
$$\left|a_{ii}\right| > \sum_{\substack{j=1 \ i \neq j}}^{n} \left|a_{ij}\right|$$
 d)  $\left|a_{ii}\right| < \sum_{\substack{j=1 \ i \neq j}}^{n} \left|a_{ij}\right|$ .



a) 
$$|f(x).f'(x)| < \{f''(x)\}^2$$

b) 
$$|f(x).f''(x)| < \{f'(x)\}^2$$

c) 
$$|f(x).f'(x)| > \{f''(x)\}^2$$

d) 
$$|f(x).f''(x)| > \{f'(x)\}^2$$
.

xii) For  $\frac{dy}{dx} = xy$  and y(0) = 2, the value of  $k_2$  according to

Runge-Kutta method of 2nd order is (h = 0.2)

a) 0.1 b) 0.01

c) 0.4 d) 0.04.

## **GROUP - B**

## (Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$ 

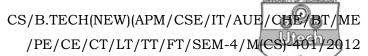
- Given  $u_0 + u_6 = 3$ ,  $u_1 + u_5 = 5$ ,  $u_2 + u_4 = 7$ . Find  $u_3$ , where  $v_x$ 2. is a function of x.
- Using the following table find  $\frac{dy}{dx}$  at x = 0 & 1.5.

x:

0

1

3


34

y: 1

2

11

4051



4. Solve the following system of equations using Gaussian elimination method:

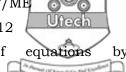
$$x + y + z = 9$$
  
 $2x - 3y + 4z = 13$   
 $3x + 4y + 5z = 40$ 

- 5. Find the value of  $(19)^{\frac{1}{3}}$  correct to four decimal points by Newton-Raphson method.
- 6. Find the cubic polynomial by Lagrange's interpolation formula which takes the following value :

$$x : 0 4 5 8$$
  
 $f(x): 1 2 1 10$ 

#### **GROUP - C**

## (Long Answer Type Questions)


Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. a) Find a root of the equation  $x^4 x 10 = 0$  that lies between 1 & 2 using Newton-Raphson method correct to 3 places of decimal.
  - b) Solve the system of equations

$$x + y + 54z = 110$$
  
 $27x + 6y - z = 85$   
 $6x + 15y + 2z = 72$ 

by Gauss-Seidel method.

7 + 8



8. a) Solve the following system of

LU-factorization method:

$$3x + 2y + 7z = 4$$

$$2x + 3y + z = 5$$

$$3x + 4y + z = 7$$

b) Using Runge-Kutta method of order 4, final y ( 0.2 ) given that  $\frac{dy}{dx} = 3e^x + 2y$ , y ( 0 ) = 0,taking h = 0.1.

7 + 8

- 9. a) Find the root of the equation  $3x \cos x 1 = 0$  by Regula-falsi method, correct to three decimal places.
  - b) Evaluate  $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \, dx$  by using (i) Trapezoidal and (ii) Simpson's  $\frac{1}{3}$  rd rule, where  $h = 15^{\circ}$ . 7 + 8
- 10. a) Compute  $y = (1 \cdot 4)$  by Milne's predictor & corrector's method from  $\frac{dy}{dx} = \frac{1}{2}(x+y)$  where  $y(1) = 3 \cdot 595$ ,  $y(1 \cdot 1) = 3 \cdot 833$ ,  $y(1 \cdot 2) = 4 \cdot 088$ ,  $y(1 \cdot 3) = 4 \cdot 362$ .
  - b) Derive Newton's divided difference formula.

4051

- c) Given that  $\frac{dy}{dx} = \log_{10}(x+y)$  with the initial condition that y = 1 when x = 0. Find y for x = 0.2 and x = 0.5 using Euler's modified formula. 5 + 5 + 5
- 11. a) If y = f(x) is a polynomial degree 5 with  $y_0 = f(0) = 0$ ,  $y_1 = f(1) = 3$ ,  $y_2 = f(2) = 14$ ,  $y_3 = f(3) = 45$ ,  $y_4 = f(4) = 84$ ,  $y_5 = f(5) = 170$ ,  $y_6 = f(6) = 258$ . It is found that there is one error in the value of  $y_3$ . Find the correct value of  $y_3$ .
  - b) Why implicit method is preferred over explicit method though it requires more computations?
  - c) Show that the rate of convergence in Newton-Raphson method is quadratic. 8 + 3 + 4

========