B. Tech III Year I Semester Examinations, December-2011
 AIRCRAFT STRUCTURES - I
 (AERONAUTICAL ENGINEERING)

Time: 3 hours
Max. Marks: 80

Answer any five questions

All questions carry equal marks

1. Find the internal loads acting on each member of the shown in fig.

2. Find the maximum normal stress in the beam in figure, the shear stress distribution over the cross -section.
[16]

3.a) Find the bending stress at any points A, B and of the beam cross - section shown in figure below.

b) Discuss about Euler's Formula for critical loads of column.
4.a) Explain the 2 D elasticity equations for generalized plan strain cases Airy's function?
b) Discuss about the classifications of columns with give some examples? [8+8]
5.a) Explain the Mohr's circle with neat sketch?
b) Draw a three dimensional view of plane stress?
3. Calculate the vertical displacements of the Quarter and mid - span points B and C of the simply supported beam of length L and Flexural rigidity EI loaded, as shown below figure.

4. The Pratt - truss shown below has four bays of 5 m , each with a height of 5 m . It carrier a load of 200 KN at each lower joint. The lower chord members are each $2500 \mathrm{~mm}^{2}$ in section. While the upper chord members are $4000 \mathrm{~mm}^{2}$ in section. The verticals have a Sectional area of $2000 \mathrm{~mm}^{2}$ and the diagonals $4250 \mathrm{~mm}^{2}$. calculate the central deflection Take E $=200 \mathrm{KN} / \mathrm{mm}^{2}$.
[16]

5. Find the shear flows in the two - cell box of figure below. The horizontal webs have gages of $\mathrm{T}=0.040 \mathrm{inch}$. Assume G is constant for all webs. The cross section is symmetrical about a horizontal center line.
[16]

B. Tech III Year I Semester Examinations, December-2011
 AIRCRAFT STRUCTURES - I
 (AERONAUTICAL ENGINEERING)

Time: 3 hours
Max. Marks: $\mathbf{8 0}$
Answer any five questions
All questions carry equal marks
1.a) Find the bending stress at any points A, B and of the beam cross - section shown in figure below.

b) Discuss about Euler's Formula for critical loads of column.
2.a) Explain the 2D elasticity equations for generalized plan strain cases Airy's function?
b) Discuss about the classifications of columns with give some examples? [8+8]
3.a) Explain the Mohr's circle with neat sketch?
b) Draw a three dimensional view of plane stress?
4. Calculate the vertical displacements of the Quarter and mid - span points B and C of the simply supported beam of length L and Flexural rigidity EI loaded, as shown below figure.
[16]

5. The Pratt - truss shown below has four bays of 5 m , each with a height of 5 m . It carrier a load of 200 KN at each lower joint. The lower chord members are each $2500 \mathrm{~mm}^{2}$ in section. While the upper chord members are $4000 \mathrm{~mm}^{2}$ in section. The verticals have a Sectional area of $2000 \mathrm{~mm}^{2}$ and the diagonals $4250 \mathrm{~mm}^{2}$. calculate the central deflection Take E $=200 \mathrm{KN} / \mathrm{mm}^{2}$.
[16]

6. Find the shear flows in the two - cell box of figure below. The horizontal webs have gages of $T=0.040 \mathrm{inch}$. Assume G is constant for all webs. The cross section is symmetrical about a horizontal center line.
[16]

7. Find the internal loads acting on each member of the shown in fig.

8. Find the maximum normal stress in the beam in figure, the shear stress distribution over the cross -section.

SET-3

B. Tech III Year I Semester Examinations, December-2011
 AIRCRAFT STRUCTURES - I
 (AERONAUTICAL ENGINEERING)

Time: 3 hours
Max. Marks: 80
Answer any five questions
All questions carry equal marks
1.a) Explain the Mohr's circle with neat sketch?
b) Draw a three dimensional view of plane stress?
2. Calculate the vertical displacements of the Quarter and mid - span points B and C of the simply supported beam of length L and Flexural rigidity EI loaded, as shown below figure.

3. The Pratt - truss shown below has four bays of 5 m , each with a height of 5 m . It carrier a load of 200 KN at each lower joint. The lower chord members are each $2500 \mathrm{~mm}^{2}$ in section. While the upper chord members are $4000 \mathrm{~mm}^{2}$ in section. The verticals have a Sectional area of $2000 \mathrm{~mm}^{2}$ and the diagonals $4250 \mathrm{~mm}^{2}$. calculate the central deflection Take $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$.
[16]

4. Find the shear flows in the two - cell box of figure below. The horizontal webs have gages of $T=0.040$ inch. Assume G is constant for all webs. The cross section is symmetrical about a horizontal center line.
[16]

5. Find the internal loads acting on each member of the shown in fig.

6. Find the maximum normal stress in the beam in figure, the shear stress distribution over the cross -section.

7.a) Find the bending stress at any points A, B and of the beam cross - section shown in figure below.

b) Discuss about Euler's Formula for critical loads of column.
8.a) Explain the 2D elasticity equations for generalized plan strain cases Airy's function?
b) Discuss about the classifications of columns with give some examples?

B. Tech III Year I Semester Examinations, December-2011
 AIRCRAFT STRUCTURES - I
 (AERONAUTICAL ENGINEERING)

Time: 3 hours
Max. Marks: 80
Answer any five questions
All questions carry equal marks

1. The Pratt - truss shown below has four bays of 5 m , each with a height of 5 m . It carrier a load of 200 KN at each lower joint. The lower chord members are each $2500 \mathrm{~mm}^{2}$ in section. While the upper chord members are $4000 \mathrm{~mm}^{2}$ in section. The verticals have a Sectional area of $2000 \mathrm{~mm}^{2}$ and the diagonals $4250 \mathrm{~mm}^{2}$. calculate the central deflection Take $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$.
[16]

2. Find the shear flows in the two - cell box of figure below. The horizontal webs have gages of $\mathrm{T}=0.040 \mathrm{inch}$. Assume G is constant for all webs. The cross section is symmetrical about a horizontal center line.
[16]

3. Find the internal loads acting on each member of the shown in fig.

4. Find the maximum normal stress in the beam in figure, the shear stress distribution over the cross -section.

5.a) Find the bending stress at any points A, B and of the beam cross - section shown in figure below.

b) Discuss about Euler's Formula for critical loads of column.
6.a) Explain the 2D elasticity equations for generalized plan strain cases Airy's function?
b) Discuss about the classifications of columns with give some examples?
7.a) Explain the Mohr's circle with neat sketch?
b) Draw a three dimensional view of plane stress?
5. Calculate the vertical displacements of the Quarter and mid - span points B and C of the simply supported beam of length L and Flexural rigidity EI loaded, as shown below figure.
[16]

