Code: 221101

B.Tech 1st Semester Exam., 2015

PHYSICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven questions :

 $2 \times 7 = 14$

- (a) Find the capacitance of a capacitor which stores 0.24 coulomb at 10 volts.
- (b) What do you mean by degrees of freedom of a system?
- (c) Mention any two properties of nanoparticles.
- (d) What is the velocity of electromagnetic wave in free space and in lossless dielectric?

- (e) What is the net capacitance if three 10 μF capacitors are connected in parallel?
- Define Poynting vectors.
- (g) Voltage applied across a ceramic dielectric produces an electrolytic field 100 times greater than air. What will be the value of dielectric constant?
- (fh) What is meant by laser welding?
- (i) What is the practical significance of dielectric strength?
- (j) What do you mean by solenoidal and irrotational vectors?
- **2.** (a) Describe any two methods of production of nanomaterials.
 - (b) State Wien's radiation formula and give its limitations.
- 3. Explain in detail how optical fibres are classified according to the material, refractive index and modes of propagation.
- 4. (a) Explain the working principle and construction of a ruby laser.

8

6

	(b)	Calculate the de Broglie wavelength associated with an electron of energy 1.5 eV.	4		(b)	In Compton experiment, the wavelength of X-ray radiation scattered at an angle of 45° is 0.022 Å. Calculate the	
5	(a)	Explain the construction and working of CO ₂ laser with its advantages. Give physical interpretation of wave function.	12	9.	(a)	wavelength of the incident X-rays. Derive the Poynting theorem and give its significance.	10
6.	(a)	Show that plane polarised and circularly polarised light are the special cases of elliptically polarised light.	8		(b)	Describe briefly about reflection coefficient and transmission coefficient.	4
	(b)	Explain normalized and orthogonal wave functions.	6				
7.	Write short notes on the following: 5+5+4=14						
	(a)	Brewster's law					
	(b)	Gauss's law in dielectric					
	(c)	Photoelectric effect					
8.		Explain in brief Compton effect on the basis of quantum hypothesis. What is its physical significance?	8				

(Turn Over)

AK16-2700/292