Scanned with CamScanner

IMPORTANT FEATURES OF 8086:

1) Buses:

Address Bus: 8086 has a 20-bit address bus, hence it can access 2°° Byte memory i.e. 1MB. The
address range for this memory is 00000H ... FFFFFH.

Data Bus: 8086 has a 16-bit data bus i.e. it can access 16 bit data in one operation. Its ALU and
internal data registers are also 16-bit.
Hence 8086 is called as a 16-bit pP.

Control Bus: The control bus carries the signals responsible for performing various operations such
as RD , WR etc.

2) 8086 supports Pipelining.
It is the process of “Fetching the next instruction, while executing the current instruction”.
Pipelining improves performance of the system.

3) 8086 has 2 Operating Modes.
i. Minimum Mode ... here 8086 is the only processor in the system (uni-processor).
ii. Maximum Mode ... 8086 with other processors like 8087-NDP/8089-10P etc.
Maximum mode is intended for multiprocessor configuration.

4) 8086 provides Memory Banks.
The entire memory of 1 MB is divided into 2 banks of 512KB each, in order to transfer 16-
bits in 1 cycle. The banks are called Lower Bank (even) and Higher Bank (odd).

5) 8086 supports Memory Segmentation.
Segmentation means dividing the memory into logical components. Here the memory is divided into 4
segments: Code, Stack, Data and Extra Segment.

6) 8086 has 256 interrupts.
The ISR addresses for these interrupts are stored in the IVT (Interrupt Vector Table).

7) 8086 has a 16-bit 10 address .. it can access 2'¢ 10 ports (2'¢ = 65536 i.e. 64K 10 Ports).

Scanned with CamScanner

r-——ﬂ--—-_-

————— —— —— ——— — —— —

F—_—————

- ———— _———---——-—"——--—--———-———---—-ﬁu———__—--—-——-——-—-————-—

Scanned with CamScanner

BIU CBUs |]I
|

[] |

5 INSTRUCTION |

, STREAM I

A BYTE |

- 3 QUEUE |

B-BUS 2 I
1 |

£S |

G ""'"-‘" ------------- ir——--— ——————— ..,,__J

sS | I

DS | :

P | |

I CONTROL I

L [T AR T J SYSTEM I
¢ |

kv \ A-BUS !
|

|

|

AH AL =

BH BL '

CH cL ARITHMETIC |

DM DL LOGIC UNIT |

SP |

BP i L A :

] |

5 . —/ |

OPERANDS =

FLAGS ’J. |

As 8086 does 2-stage pipelining, its architecture is divided into two units:
1. Bus Interface Unit (BIU)
2. Execution Unit (EU)

Bus INTERFACE UNIT (BIU)

1. It provides the interface of 8086 to other devices.
2. It operates w.r.t. Bus cycles .
This means it performs various machine cycles such as Mem Read, 10 Write etc to transfer data with
Memory and 1/0 devices.
3. It performs the following functions:
a) It generates the 20-bit physical address for memory access.
b) Fetches Instruction from memory.
c) Transfers data to and from the memory and IO.
d) Supports Pipelining using the 6-byte instruction queue.

The main components of the BIU are as follows:

a) SEGMENT REGISTERS:

1) CS Register
CS holds the base (Segment) address for the Code Segment.

All programs are stored in the Code Segment.

It is multtiplied by 10H (164), to give the 20-bit physical address of the Code Segment.
Eg: If CS = 4321H then CS x 10H = 43210H & Starting address of Code Segment.

CS register cannot be madified by executing any instruction except branch instructions

2) DS Register
DS holds the base (Segment) address for the Data Segment.

It is multiplied by 10H (164), to give the 20-bit physical address of the Data Segment.
Eg: If DS = 4321H then DS x 10H = 43210H 2 Starting address of Data Segment.

3) SS Register
SS holds the base (Segment) address for the Stack Segment.

It is multiplied by 10H (164), to give the 20-bit physical address of the Stack Segment.
Eg: If SS = 4321H then SS x 10H = 43210H - Starting address of Stack Segment.

4) ES Register
ES holds the base (Segment) address for the Extra Segment.

It is multiplied by 10H (164), to give the 20-bit physical address of the Extra Segment.
Eg: If ES = 4321H then ES x 10H = 43210H > Starting address of Extra Segment.

b) Instruction Pointer (IP register)
It is a 16=bit register.
It holds offset of the next instruction in the Code Segment.

Scanned with CamScanner

Address of the next instruction is calculated as CS x 10H + IP.
IP is incremented after every instruction byte is fetched.
IP gets a new value whenever a branch occurs.

Address Generation Circuit

The BIU has a Physical Address Generation Circuit. It generates the 20-bit physical address using
Segment and Offest addresses using the formula:

Physical address = Segment Address x 10h + Offset Address

d)

Viva Question: Explain the real procedure to obtain the Physical Address?

The Segment address is left shifted by 4 positions, this multiplies the number by 16 (i.e. 10h) and then the offset address is
added.

Eg: If Segment address is 1234h and Offset address is 0005h, then the physical address (12345h) is calculated as follows:
1234h = (0001 0010 0011 0100)sinary

Left shift by four positions and we get (0001 0010 0011 0100 0000)sinary i.e. 12340h

Now add (0000 0000 0000 01 01)binary i.e. 0005h and we get (0001 0010 0011 0100 01 Ol)b;nw i.e. 12345h,

6-Byte Pre-Fetch Queue {Pipelining - 4m?}

It is a 6-byte FIFO RAM used to implement Pipelining.

Fetching the next instruction while executing the current instruction is called Pipelining.

BIU fetches the next “six instruction-bytes” from the Code Segment and stores it into the queue.
Execution Ursit (EU) removes instructions from the queue and executes them.

The queue is refilled when atleast two bytes are empty as 8086 has a 16-bit data bus.
Pipelining increases the efficiency of the MP.

Pipelining fails when a branch occurs, as the pre-fetched instructions are no longer useful.

Hence as soon as 8086 detects a branch operation, it clears/discards the entire queue. Now, the next

six bytes from the new location (branch address) are fetched and stored in the queue and Pipelining
continues,

NON-PIPELINED PROCESSOR EG: 8085

_ . Time
|F1|£1|F2|52|F3|53[F4_E4[F5]_E| v
h Total time taken .
PIPELINED PROCESSOR EG: 8086
| . Time
F1 | E1 | E2 | E3 | E4 | E5 v
F2 | F3 | F4 | F5

Overlapping fetching
and execution

A

»>
Total time taken

Scanned with CamScanner

Execution Unit (EU)

1.
2.
3.
4,

It fetches instructions from the Queue in BIU, decodes and executes them.
It performs arithmetic, logic and internal data transfer operations.

It sends request signals to the BIU to access the external module.

It operates w.r.t. T-States (clock cycles). @ ror deubts contact Bharat Sir on 98204 08217

The main components of the EU are as follows:

a) General Purpose Registers

8086 has four 16-bit general-purpose registers AX, BX, CX and DX. These are available to the
programmer, for storing values during programs. Each of these can be divided into two 8-bit
registers such as AH, AL; BH, BL; etc. Beside their general use, these registers also have some

specific functions.

AX Register (16-Bits)
It holds operands and results d
All 10 data transfers using IN and OUT instructions use A reg

It functions as accumulator during string operations.

BX Register (16-Bits)

Holds the memory address (offset address

uring multiplication and division operations.
(AL/AH or AX).

), in Indirect Addressing modes.

CX Register (16-=Bits)
Holds count for instructions like: Loop, Rotate, Shift and String Operations.

DX Register (16-Bits)
It is used with AX to hold 32 bit values during Multiplication and Division.
It is used to hold the address of the 10 Port in indirect IO addressing mode.

b) Special Purpose Registers

Stack Pointer (SP_16-Bits)
It is holds offset address of the top of the Stack. Stack is a set of memory locations operating

in LIFO manner. Stack is present in the memory in Stack Segment.
Sp is used with the SS Reg to calculate physical address for the Stack Segment. It used during
instructions like PUSH, POP, CALL, RET etc. During PUSH instruction, SP is decremented by 2 and

during POP it is incremented by 2.

Base Pointer (BP_16-Bits)
BP can hold offset address of any location in the stack segment.
It is used to access random locations of the Stack. #riease refer Bharat Sirs Lecture Notes for this

Source Index (SI 16-Bits)

It is normally used to hold the offset address for Data segment but can also be used for other
segments using Segment Overriding. It holds offset address of source data in Data Seg, during

String Operations.

Scanned with CamScanner

Destination Index (DI 16-Bits)
It is normally used to hold the offset address for Extra segment but can also be used for other
segments using Segment Overriding. It holds offset address of destination in Extra Seg, duving

String Operations.

c) ALU (16-Bits)
It has a 16-bit ALU. It performs 8 and 16-bit arithmetic and logic operations.

d) Operand Register
It is a 16-bit register used by the control register to hold the operands temporarily.
It is not available to the Programmer.

e) Instruction Register and Instruction Decoder (Present inside the Control Unit)
The EU fetches an opcode from the queue into the Instruction Register. The Instruction
Decoder decodes it and sends the information to the control circuit for execution.

f) Flag Register (16-Bits)

It has 9 Flags.

These flags are of two types: 6-Status (Condition) Flags and 3-Control Flags.

Status flags are affected by the ALU, after every arithmetic or logic operation. They give the status
of the current result.

The Control flags are used to control certain operations.

They are changed by the programmer.

r Control Flags —

x| x|[x]| x | OF |DF|IF |TF|sF|zF| x |AaF| x |PF| x |cF
= T T T T T T T == T
| !] 1] i |] '
1 | '] ' | | ' '
Overflow Flag 4.____ i i : i H v i i
1 =0Overflow Occurred | i i i E Auxiliary Carry Fla E i
0=No Overflow Occurred H i ! ! ! 1=Carry from Lower ' '
(OFis calculated as C7 Ex-Or C6) i H ! : i Nibble to Higher Nibble ! '
I]]] 1 I |
. i ' ' ' 1 0=Nosuch Carry i '
Direction Flag «----- i ' i i (Usedin 8-bit operations) | i
1= Auto Decrement ' ! | v v H
0= Auto Increment i 5 E Zero Flag Parity Flag |
(Usedin String Instructions) ! ! ! 1=Result =0 1 =Even Parity E
! ! ! O0=Result =0 0 =0dd Parit
Interrupt Flag <«----- :' v Y v
1=Enable Interrupt | Sign Fla Carry Flag
0=Disable Interrupt E 1=MSB of resultis 1 (. -ve) 1=_Carry out of
(Affects Only INTR) v 0=MSB of resultis 0 (. +ve) MsB
(Used for “Signed” numbers) 0=No such Carry
Trap Flag

1 =Perform Single Stepping
0=Do Not Perform Single Stepping

Scanned with CamScanner

STATUS FLAGS

1) Carry flag (CY)
It is set whenever there is a carry {or borrow} out of the MSB of a the result

(D7 bit for an 8-bit operation D15 bit for a 16-bit operation)

2) Parity Flag (PF)
It is set if the result has even parity.

3) Auxiliary Carry Flag (AC)
It is set if a carry is generated out of the Lower Nibble.
It is used only in 8-bit operations like DAA and DAS.

4) Zero Flag (ZF)
It is set if the result is zero.

5) Sign Flag (SF)
1t is set if the MSB of the result is 1.
For signed operations, such a number is treated as -ve.

6) Overflow Flag (OF)
It will be set if the result of a signed operation is too large to fit in the number of bits available to

represent it. It can be checked using the instruction INTO (Interrupt on Overflow). spiease refer Bharat Sirs
Lecture Notes for this

CONTROL FLAGS

1) Trap Flag (TF)
It is used to set the Trace Mode i.e. start Single Stepping Mode.
Here the uP is interrupted after every instruction so that, the program can be debugged.

2) Interrupt Enable Flag (IF)
It is used to mask (disable) or unmask (enable) the INTR interrupt.

3) Direction Flag (DF)
If this flag is set, SI and DI are in auto-decrementing mode in String Operations.

Scanned with CamScanner

MEMORY SEGMENTATION IN 8086

SS

DS

ES

00000,

Segment (Base) Address }’

"~
;

IP Offset Address

Y

Of next Instruction

"~
Segment (Base) Address

3%

Offset Address

v

SP Of Top Of Stack

v

Offset Address
BP Of any random
location of Stack

~
~

Segment (Base) Address

3)
«

Sl Offset Address

v

Of Data

~

Segment (Base) Address” |

39
(£ 4

Dl Offset Address

v

Of Data

~

FFFFF, "

o/
et
~N

>~ Code Segment

> Stack Segment

~ Data Segment

> Extra Segment

'22\

Scanned with CamScanner

NEED FOR SEGMENTATION / CONCEPT OF SEGMENTATION

1) Segmentation means dividing the memory into logically different parts called segments.
2) 8086 has a 20-bit address bus, hence it can access 2%° Bytes i.e. 1MB memory.

3) But this also means that Physical address will now be 20 bit.

4) Itis not possible to work with a 20 bit address as it is not a byte compatible number.
(20 bits is two and a half bytes).

5) To avoid working with this incompatible number, we create a virtual model of the memory.

6) Here the memory is divided into 4 segments: Code, Stack Data and Extra.

7) The max size of a segment is 64KB and the minimum size is 16 bytes.

8) Now programmer can access each location with a VIRTUAL ADDRESS.

9) The Virtual Address is a combination of Segment Address and Offset Address.

10) Segment Address indicates where the segment is located in the memory (base
address)

11) Offset Address gives the offset of the target location within the segment.

12) Since both, Segment Address and Offset Address are 16 bits each, they both are compatible
numbers and can be easily used by the programmer.

13) Moreover, Segment Address is given only in the beginning of the program, to initialize the
segment. Thereafter, we only give offset address.

14) Hence we can access 1 MB memory using only a 16 bit offset address for most part of

the program. This is the advantage of segmentation.

15) Moreover, dividing Code, stack and Data into different segments, makes the memory more
organized and prevents accidental overwrites between them.

16) The Maximum Size of a segment is 64KB because offset addresses are of 16 bits.
2'® = B4KB.

17) As max size of a segment is 64KB, programmer can create multiple Code/Stack/Data
segments till the entire 1 MB is utilized, but only one of each type will be currently active.

18) The physical address is calculated by the microprocessor, using the formula:

PHYSICAL ADDRESS = SEGMENT ADDRESS X 10H + OFFSET ADDRESS

19) Ex: if Segment Address = 1234H and Offset Address is 0005H then
Physical Address = 1234H x 10H + 0005H = 12345H
20) This formula automatically ensures that the minimum size of a segment is 10H bytes

(10H = 16 Bytes).

Scanned with CamScanner

Code Segment

This segment is used to hold the program to be executed.
Instruction are fetched from the Code Segment.

CS register holds the 16-bit base address for this segment.

IP register (Instruction Pointer) holds the 16-bit offset address.

Data Segment
This segment is used to hold general data.

This segment also holds the source operands during string operations.

DS register holds the 16-bit base address for this segment.

BX register is used to hold the 16-bit offset for this segment.

SI register (Source Index) holds the 16-bit offset address during String Operations.

Stack Segment

This segment holds the Stack memory, which operates in LIFO manner.
SS holds its Base address.

SP (Stack Pointer) holds the 16-bit offset address of the Top of the Stack.
BP (Base Pointer) holds the 16-bit offset address during Random Access.

Extra Segment
This segment is used to hold general data

Additionally, this segment is used as the destination during String Operations.
ES holds the Base Address.

DI holds the offset address during string operations.

Advantages of Segmentation:

1) It permits the programmer to access 1MB using only 16-bit address.
2) Its divides the memory logically to store Instructions, Data and Stack separately.

Disadvantage of Segmentation:
1) Although the total memory is 16*64 KB, at a time only 4*64 KB memory can be accessed.

Scanned with CamScanner

MEMORY BANKING IN 8086

As 8086 has a 16-bit data bus, it should be able to access 16-bit data in one cycle.

To do so it needs to read from 2 memory locations, as one memory location carries only one byte.
16-bit data is stored in two consecutive memory locations.

However, if both these memory locations are in the same memory chip then they cannot be accessed
at the same time, as the address bus of the chip cannot contain two address simultaneously.

Hence, the memory of 8086 is divided into two banks each bank provides 8-bits.

The division is done in such a manner that any two consecutive locations lie in two different chips.
Hence each chip contains alternate locations.

~. One bank contains all even addresses called the “"Even bank”, while the other is called “Odd
bank” Containing all odd addresSes. @ ror doub contact aharat sir an 8204 08217

Generally for any 16-bit operation, the Even bank provides the lower byte and the ODD bank provides
the higher byte. Hence the Even bank is also called the Lower bank and the Odd bank is also
called the Higher bank.

1 MB
I |
512 KB 512 KB
Odd Bank Even Bank
« Also called as “Higher bank” * Also called as "Lower bank”
* Address range: * Address range:
00001H 0000CH
00003H 00002H
00005H 00004H
FFFFFH FFFFEH

Selected when Ap = 0

» Selected when BHE =0

‘BHE A | OPERATION |
0 0 R/W 16-bit from both banks
0 1 R/W 8-bit from higher bank
1 0 R/W 8-bit from lower bank
1 1 No Operation (Idle).

Scanned with CamScanner

PIN DIAGRAM OF 8086

8284
Clock
Generator

CLK
RESET

READY

NMI __

INTR
(8259 PIC)

TEST
(8087 COP)

A 00 O O

ADO - AD15

BHE /S7

—— RD

Min Mode

«———— HOLD <=
(8237)

— » HLDA <=
(8237)

> WR
(74138)
—> DEN

(8286)
—— DT/ R

(8286)
— M/ 10
(74138)

————— ALE —
(8282)

—

INTA

16
4

- 4' A16/S3-A19/s6 ~ &
1

.%L.

8282
Latch

8286
Transreceiver

.J

(74138 - 3:8 Decoder)
Disabled in Max Mode

Max Mode
_*E/ GTo
(8087/8089)
—bR_Ql-/ GT,
(8087/8089)
—> LOCK
(8289 Bus Arbiter)

';"Su
(8288)
— s,
(8288)
> S,
(8288)

—» QS
(8087)

—3 Qsl

(8259)

(8288)

Scanned with CamScanner

Machine Cycles

Bus Cycle / Machine Cycle

INTA Cycle

1/0 Read

I/O Write

Halt

Opcode Fetch

Memory Read

Memory Write

||| = |ololo|o ,F,"I
ik lolo|r|~|olo ..‘P|
o [=]1 =1 i (=] 3 [=] gl|

Inactive

Segment Selection

Sa Ss Segment. Selected

00 Extra Segment

Stack Segment

CS/No Segment Selected

—=|-|o
=]

Data Segment

Queue Synchronization

QS; QSo

Queue Operation

0 0O

NOP

Opcode Fetch from gueue

0 1
1 0
1 1

Queue is Cleared

Fetch remaining instruction bytes form gqueue

Scanned with CamScanner

PIN DESCRIPTIONS

« CLK

This is the clock-input line. .
An external clock generator (8284) provides the clock mgnal.
8086 required single phase, 33% duty cycle, TTL clock signal.

« RESET
This is the reset input signal. The 8284 Clock generator provides it.
It Clears the Flag register and the Instruction Queue.
It also Clears the DS, SS, ES and IP registers and Sets the bits of CS register.
Hence the reset vector address of 8086 is FFFFOH
(as CS = FFFFH and IP = 0000H).

* READY

This signal is used to synchronize the uP with slower peripherals.

Devices inform the uP whether they are ready or not.

uP samples the READY input during T3 state of a Machine Cycle

If device is Ready it send a “1” on the Ready pin else send a “0”,

If Ready pin is 0, uP inserts wait-states between T3 and T4 and will only come out of Wait state
when Ready becomes 1 thereby ensuring that the Device is ready.

* TEST

It is an active low input line dedicated for 8087 Co-processor.
In Maximum Mode whenever the Co-Processor is busy it makes this pin HIGH.

HP samples the TEST input only when it encounters the WAIT instruction.

If the TEST pin is high, the pP enters wait state, till TEST pin becomes low i.e. 8087 is free.
In minimum mode it is not used and is connected to ground (VIVA Q).

« MN/ MX

This is an input signal to 8086.
If this signal is HIGH, 8086 is in Minimum mode i.e. Uni-Processor system.
If this signal is Low, 8086 is in Maximum mode i.e. Multiprocessor system.

* NMI
This is a non-maskable, edge triggered, high priority interrupt.

On recei_ring an interrupt on NMI line, the pP executes INT 2 i.e. and takes control to location 2 x 4 =
00008H in the Interrupt Vector Table (IVT), to get the value for CS ad IP.

Scanned with CamScanner

INTR

This is a maskable, level triggered, low priority interrupt.
On receiving an mterrupt on INTR line, the pP executes 2 INTA cycles.

On FIRST INTA pulse, the interrupting device (8259) prepares to send a vector number "N".

On SECOND INTA pulse, the interrupting device (8259 PIC) sends vector number "N” to pP.
Now pP will multiply N x 4 and go to the IVT to obtain the ISR address i.e. values for IP and CS.

RD

It is an active low output signal. When it is low 8086 reads from memory or 10.

VCC and GND

Used for power supply. Two grounds are due to the two internal layers in pP.

AD15 - ADO

It carries A;s - Ao (address) during T1 of a Machine Cycle when ALE = 1.
It carries Dys - Dg (data) for remaining T-States of a Machine Cycle when ALE = 0.

Al16/S3 - A19/S6

These lines carry (A;g .- Azg) during T1 of every M/C Cycle.
T2 onwards these lines carry the Status signals Ss ... Se.

S3 and S, indicate the memory segment currently accessed. Ss gives the status of the Interrupt
Enable Flag. Sg goes low when 8086 controls the system bus.

BHE /S7

1t carries BHE during T1. BHE is used to enable the higher bank.
T2 onwards it carries S7, which is reserved for "further development” © .

Scanned with CamScanner

MIN Mode / Max Mode Signals (10m guestion --- Important)

* HOLD --- RQ o/ GT,

In Minimum Mode this line carries the HOLD input signal.
The DMA Controller issues the HOLD signal to request for the system bus.
In response 8086 completes the current bus cycle and releases the system bus.

In Maximum Mode it carries the bi-directional RQ o/ GT o signal (Request/Grant).The external bus

master (eg: 8087) sends an active low pulse to request for the sys bus.
In response the 8086 completes the current bus cycle, releases the system bus and sends an
active low Grant pulse on the same line to the external bus controller.

8086 gets back the system bus only after external bus master sends an active low release
pulse on the same line.

* HLDA --- RQ,/ GT;,

In Minimum Made this line carries the HLDA signal.
This signal is issued by 8086 after releasing the system bus.

In Maximum Mode it functions as RQ 1/ GT 1, which is the same as RQ o/ GT o but is of lower
priority.

8086 is the WP releases P becomes the
hus master the bus Bus Master
RQ / GT / 12
+ — 1
Request Grant Other Bus Master .Release
Given to puP Given by pupP uses the bus Given to uP

(8087 or 8089)

S e —
- -

Scanned with CamScanner

* WR --- LOCK

In Minimum Mode this line carries the WR signal.

It is used with M/ 10 to write to Memory or IO Device.

In Maximum Mode it functions as the LOCK output line.
When this signal is active (i.e. low) the external bus master cannot take control of the system
bus. It is activated when 8086 executes an instruction with the LOCK prefix, and remains active

till next instruction.

LOCK Prefix: Normally a bus request is serviced after the current machine cycle and an interrupt
request is serviced after the current instruction cycle.

But if we write LOCK prefix before any instruction, then even if there is a bus request, the bus will be
released only after the current instruction. Hence the bus is said to be locked during the instruction.

P will maintain LOCK signal low throughout the instruction to indicate that it is performing an

instruction with LOCK prefix. LOCK signal is given to 8289 Bus Arbiter in Loosely Coupled Systems,

to prevent 8289 from releasing the system bus to other bus masters.

Bus Request/

During LOCK
instruction

Interrupt
Request

Ordinary/

Bus (DMA)
Request

-
M1 M2
Machine Machine
Cycle Cycle

/__———...-..—-..__..

P

/' \

M3 ..

Mzchine
Cycla

b= =

Instruction Cycle ——»

Mn

Machine
Cyclz

‘. Serviced
\

A}
A
\
\

| <4
Serviced Serviced Serviced Serviced

Scanned with CamScanner

« DEN --- SO

In Minimum Mode it carries the DEN signal

It is used to enable the data transceivers (bi-directional buffers - IC 8286).
In Maximum Mode it carries the S—g signal.

In Maximum Mode, Bus Controller (IC 8288) gives the DEN signal.

« DT/R --- S1

In Minimum Maode it carries the DT/F signal

This signal goes low for a Read operation and high for a write operation.
In Maximum Mode it carries the Sy signal.

In Maximum Mode, Bus Controller gives the DT/ R signal.

DEN DT/ R Action
1 X Transreceiver is disabled
0 0 Receive data
0 1 Transmit data

« M/IO --- S2

In Minimum Mode it carries the M/ 10 signal, to distinguish between Memory and 10 access.
In Maximum Mode it carries the Ez_ signal.

In Maximum Mode E; 5_1 and S_o are used to generate the appropriate control signal.

M/ IO RD WR Action
1 0 1 Memory Read
1 1 0 Memory Write
0 0 1 1/0 Read
0 1 0 1/0 Write

* ALE --- QSO

In Minimum Mode it carries the ALE signal, which is used to latch the address.
In Maximum Mode it carries the QS, signal.

It is used with QS; to indicate the Instruction Queue Status.

In Maximum Mode, Bus Controller gives the ALE signal.

Scanned with CamScanner

. INTA --- QS1
In Minimum Mode it carries the INTA signal

It is issued in response to an interrupt on the INTR line.
It is used to read the vector number form the interrupting device.

In Maximum Mode it carries the QS: signal. © For doubts contact Bharat Sir on 982
In Maximum Mode, Bus Controller gives the INTA signal.

to-back INTA cycles

Timing diagram for 2 back-

I'r1l'rzl'ra|T4I

04 08217

ADO- FLOAT
AD15

As shown above there are two INTA cycles.

« Each INTA cycle is of 4 T-states

« Inthe 1st INTA cycle, the interrupting device

(8259) starts preparing the vector number “N".

s the vector number (Type Number) "N“, to the

In the 2nd INTA cycle, 8259 send
d address data bus.

through the multiplexe
e number by 4 and goes to the

mmicroprocessor,
corresponding location in

« The microprocessor then multiplies th

the IVT (Interrupt Vector Table).

From there it obtains the values of Segme
d hence executes the ISR.

nt Address and Offset Address for the ISR of the

corresponding interrupt, an
e bus is not released in

LOCK signal is held low between the two INTA cycles, sO that th

between this process.

Scanned with CamScanner

ADDRESSING MODES OF 8086

8086 provides different addressing modes for Data, Program and Stack Memory.

ADDRESSING MODES FOR DATA MEMORY {IMP}

I IMMEDIATE ADDRESSING MODE

In this mode the operand is specified in the instruction itself.
Instructions are longer but the operands are easily identified.

Eg: MOV CL, 12H , Moves 12 immediately into CL register
MOV BX, 1234H ; Moves 1234 immediately into BX register

ITIREGISTER ADDRESSING MODE

In this mode operands are specified using registers.
Instructions are shorter but operands cant be identified by looking at the instruction.

Eg: MOV CL, DL ; Moves data of DL register into CL register
MOV AX, BX ; Moves data of BX register into AX register

III DiIrRect ADDRESSING MODE

In this mode address of the operand is directly specified in the instruction.
Here only the offset address is specified, the segment being indicated by the instruction.

Eg: MOV CL, [4321H] ; Moves data from location 4321H in the data
, segment into CL
; The physical address is calculated as
, DS * 104+ 4321
; Assume DS = 5000H
; - P A= 50000 + 4321 = 54321H
; o~ CL € [54321H]

Eg: MOV CX, [4320H] ; Moves data from location 4320H and 4321H
; in the data segment into CL and CH resp.

Scanned with CamScanner

IV INDIRecT ADDRESSING MODES

REGISTER INDIRECT ADDRESSING MODE

In this mode the pP uses any of the 2 base registers BP, BX or any of the two index registers SI,
DI to provide the offset address for the data byte.

The segment is indicated by the Base Registers:
BX -- Data Segment, BP --- Stack Segment

Eg: MOV CL, [BX] ; Moves a byte from the address pointed by BX in Data
; Segment into CL.
; Physical Address calculated as DS * 10, + BX
Eg: MOV [BP], CL ; Moves a byte from CL into the location pointed by BP in
; Stack Segment.

/ Physical Address calculated as SS * 10,, + BP

REGISTER RELATIVE ADDRESSING MobDE

In this mode the operand address is calculated using one of the base registers and a 8-bit or a
16-bit displacement.

Eg:MOV CL, [BX+4] ; Moves a byte from the address pointed by BX+4 in

; Data Seg to CL.
; Physical Address: DS * 104+ BX + 4H

Eg: MOV 12H [BP], CL ; Moves a byte from CL to location pointed by BP+12H in

; the Stack Seg.
; Physical Address: SS * 104+ BP + 12H

BASE INDEXED ADDRESSING MoDE
2ASE INDEXED ADDRESSING MoODE

Here, operand address is calculated as Base register plus an Index register.

Eg: MOV CL, [BX+SI] ; Moves a byte from the address pointed by BX+SI
/ in Data Segment to CL.

/ Physical Address: ps * 104+ BX + SI

Eg: MOV [BP+DI], CL ; Moves a byte from CL into the address pointed by
/ BP+DI in Stack Segment.

;/ Physical Address: Ss * 104+ BP + DI

Scanned with CamScanner

BASE RELATIVE PLUS INDEX ADDRESSING MODE

In this mode the address of the operand is calculated as Base register plus Index register plus
8-bit or 16-bit displacement.

Eg: MOV CL, [BX+DI+20] ; Moves a byte from the address pointed by
; BX+5I+20H in Data Segment to CL.
; Physical Address: DS * 104+ BX + SI+ 20H

Eg: MOV [BP+S1+2000], CL ; Moves a byte from CL into the location pointed by
;, BP+SI+2000H in Stack Segment.
; Physical Address: SS * 10y + BP+SI+2000H

V IMPLIED ADDRESSING MODE
In this addressing mode the operands are implied and are hence not specified in the instruction.

#Please refer Bharat Sir's Lecture Notes for this

Eg: STC ; Sets the Carry Flag.

Eg: CLD ; Clears the Direction Flag.

Important points for understanding addressing modes...
1) Anything given in square brackets will be an Offset Address also called Effective Address.

2) MoV instruction by default operates on the Data Segment; unless specified otherwise.

3) BXand BP are called Base Registers.
BX holds Offset Address for Data Segment.
BP holds Offset Address for Stack Segment.

4) Sl and Di are called Index Registers

5) The Segment to be operated is decided by the Base Register and NOT by the Index Register.

Scanned with CamScanner

ADDRESSING MODES FOR PROGRAM MEMORY

(optional --- to be written only if asked)

This addressing mode is required for instructions that cause a branch in the program. If the Branch
is within the same segment, it is called as an Intra-Segment Branch or a Near Branch. If the
Branch is in a different segment, it is called as an Inter-Segment Branch or a Far Branch.

INTRA SEGMENT DIRECT ADDRESSING MODE

Address is specified directly in the instruction as an 8-bit (or 16-bit) displacement.

The effective address is thus calculated by adding the displacement to current value of IP.
As it is intra-segment, ONLY IP changes, CS does not change.

If the displacement is 8-bit it is called as a Short Branch.

This addressing mode is also called as relative addressing mode.

Eg: Code SEGMENT
Prev: ...
Current: JMP Prev >; IP & Offset address of "Prev”
Code ENDS
Or
Code SEGMENT

Current: JMP Next

Next: ... DIP & Offset address of "Next”

Code ENDS

INTER SEGMENT DIRECT ADDRESSING MODE

The new Branch location is specified directly in the instruction
Both CS and IP get new values, as this is an inter-segment branch.
Eg:

Code_1 SEGMENT

Current: JMP NextSeg ; CS €& Segment address of "NextSeg”
NP € Offset address of "NextSeg”

Code_1 ENDS

Code_2 SEGMENT
NextSeg: ...

Code_2 ENDS

Scanned with CamScanner

INTRA SEGMENT INDIRECT ADDRESSING MODE

Address is specified indirectly through a register or a memory location (in DS only).

The value in the IP is replaced with the new value.
As it is intra-segment, ONLY IP changes, CS does not change.

Eg: JMP WORD PTR [BX] . IP € {DS:[BX], DS:[BX+1]}

INTER SEGMENT INDIRECT ADDRESSING MODE

The new Branch location is specified indirectly through a regis

DS Only). #Piease refer Bharat Sir's Lecture Notes for this -
Both CS and IP get new values, as this is an inter-segment branch.

Eg: JMP DWORD PTR [BX] ; IP € {DS:[BX], DS:[BX+1]},
; CS € {DS:[BX+2], DS:[BX+3]}

ter or a memory location (in

OR STACK MEMORY (optional, to be written only if asked)

ADDRESSING MODES F

REGISTER ADDRESSING MODE

Here the operands are specified in registers (ONLY 16-bit registers).

EG: PUSH BX; Transfers BH at location pointed by SP-1 and BL at location
; pointed by SP-2in the Stack segment. Also SP € SP- 2.

ReGISTER INDIRECT ADDRESSING MoODE
Here the address of the operand is specified in the registers.

Eg: PUSH [BX] ; Transfers a word from location pointed by BX an

d BX+1in

; data segment to sp-1 and SP-2 in Stack Segment.

1) Flag Addressing Mode
Here the contents of Fla

Eg: PUSHF ; Transfers higher byte of Flag register to SP-1
; and lower byte to Sp-2 in the Stack Segment.

2) Segment Register Addressing Mode
Here the segment registers (except CS) are transfe

Eg: PUSH DS/ Transfers higher byte of DS register to location

g register are transferred to and from the Stack.

rred to and from the Stack.

; SP-1and lower byte to SP-2 in the Stack Segment.

Scanned with CamScanner

8086 SOFTWARE MODEL

External memaory
address space

Code segment
(64 K bytes)

Data segment
(64 K bytes)

00000,
8088/8086 |
MPU
1P
Cs
DS o
SS
ES
AH AL AX
BH BL BX
CH cL cX >
DH DL DX
SP
BP
S1
DIl —
SR

Stack segment
(64 K bytes)

Extra segment
(64 K bytes)

FFFFF g

Scanned with CamScanner

8086 INSTRUCTION SET

CLASSIFICATION OF INSTRUCTION SET OF 8086

1) DATA TRANSFER INSTRUCTIONS
E.g.:: MOV, PUSH, POP

2) ARITHMETIC INSTRUCTIONS
E.g.:: ADD, SUB, MUL

3) LoGIC INSTRUCTIONS (BIT MANIPULATION INSTRUCTIONS)
E.g.:: AND, OR, XOR

4) SHIFT INSTRUCTIONS & ROTATE INSTRUCTIONS
E.g.:: ROL, RCL, ROR, SHL

5) PROGRAM EXECUTION AND TRANSFER INSTRUCTIONS (BRANCH INSTRUCTIONS)
E.g.:: JMP, CALL, JC

6) ITERATION CONTROL INSTRUCTIONS (LooP INSTRUCTIONS)

E.g.:: LOOP, LOOPZ, LOOPNE
7) PROCESSOR CONTROL INSTRUCTIONS (INSTRUCTIONS OPERATING ON FLAGS)
E.g.:: STC, CLC, CMC
8) EXTERNAL HARDWARE SYNCHRONIZATION INSTRUCTIONS
E.g.:: LOCK, ESC, WAIT

9) INTERRUPT CONTROL INSTRUCTIONS
E.g.:: INT n, IRET, INTO (Interrupt on overflow)

10) STRING INSTRUCTIONS
E.g.:: MOVSB, LODSB, STOSB

Scanned with CamScanner

1)

2)

3)

Data Transfer Instructions

MOV Destination, Source

Moves a byte/word from the source to the destination specified in the instruction.
Source: Register, Memory Location, Immediate Number

Destination: Register, Memory Location

Both, source and destination cannot be memory locations.

Eg: MOV CX, 0037H : CX € 0037H
MOV BL, [4000H] . BL € DS:[4000H]
MOV AX, BX : AX € BX
MOV DL, [BX] : DL € DS:[BX]
MOV DS, BX : DS € BX

PUSH Source

Push the source (word) into the stack and decrement the stack pointer by two.
The source MUST be a WORD (16 bits).

Source: Register, Memory Location

Eg: PUSH CX . SS:[SP-1] € CH, SS:[SP-2] € CL
;SP €SP -2
PUSH DS . §5:[SP-1, SP-2] € DS
SP €SP -2

POP Destination

POP a word from the stack into the given destination and increment the Stack Pointer by 2. The
destination MUST be a WORD (16 bits).

Destination: Register [EXCEPT CS], Memory Location

Eg: POP CX : CH € SS:[SP], CL € SS:[SP+1]
;SP €SP +2
POP DS ; DS €& SS:[SP, SP+1]
;SP €SP + 2

Please Note: MOV, PUSH, POP are the ONLY instructions that use the Segment Registers as operands
{except CS}.

4)

5)

6)

PUSHF

Push value of Flag Register into stack and decrement the stack pointer by 2.

Eg: PUSHF : SS:[SP-1] € Flagy, SS:[SP-2] € Flag,, SP € SP - 2
POPF

POP a word from the stack into the Flag register.

Eg: POPF : Flag, € SS:[SP], Flag, € SS:[SP+1], SP € SP + 2
XCHG Destination, Source

Exchanges a byte/word between the source and the destination specified in the instruction.
Source: Register, Memory Location
Destination: Register, Memory Location
Even here, both operands cannot be memory locations.
Eg: XCHG CX, BX ;. CX €2 BX
XCHG BL, CH ; BL €= CH

Scanned with CamScanner

7) XLATB / XLAT (very important)
Move into AL, the contents of the memory location in Data Segment, whose effective address is
formed by the sum of BX and AL.
Eg: XLAT y AL € DS:[BX + AL]

; i.e. if DS = 1000H; BX = 0200H; AL = 03H
; ~. 10000 ..DS«x 16

; + 0200 .. BX

D+ 03 ..AL

; =10203 . AL € [10203H]

Note: the difference between XLAT and XLATB

In XLATB there is no operand in the instruction.
E.g.:: XLATB

It works in an implied mode and does exactly what is shown above.

In XLAT, we can specify the name of the look up table in the instruction
E.g.:: XLAT SevenSeqg

This will do the translation form the look up table called SevenSeg.
In any case, the base address of the look up table must be given by BX.

8) LAHF
Loads AH with lower byte of the Flag Register.

9) SAHF
Stores the contents of AH into the lower byte of the Flag Register.

10)LEA register, source

Loads Effective Address (offset address

) of the source into the given register.
Eg: LEA BX, Total

i BX € offset address of Total in Data Segment.

11)LDS destination register, source
Loads the destination register and DS register with offset address and segment address
specified by the source.
Eg: LDS BX, Total ; BX € {DS:[Total], DS:[Total + 1]},
» DS€ {DS: [Total + 2], DS:[Total + 3]}

12)LES destination register, source
Loads the destination register and ES re
indirectly specified by the source.
Eg: LES BX, Total ; BX € {DS:[Total], DS:[Total + 1]},
; ES€ {DS: [Total + 2], DS:[Total + 37}

gister with the offset address and the segment address

Scanned with CamScanner

I/0 ADDRESSING MODES OF 8086 (5m - Important Question)

[/O addresses in 8086 can be either 8-bit or 16-bit

Direct Addressing Mode:

If we use 8-bit I/0 address we get a range of 00H... FFH.
This gives a total of 256 I/0 ports.

Here we use Direct addressing Mode, that is, the I/0 address is specified in the instruction.
E.g.:: IN AL, 80H ; AL gets data from I/0 port address 80H.

This is also called Fixed Port Addressing.

Indirect Addressing Mode:

If we use 16-bit I/0 address we get a range of 0000H... FFFFH.
This gives a total of 65536 1/0 ports.

Here we use Indirect addressing Mode, that is, the 1/0 address is specified by DX register.

E.g.:: MOV DX, 2000H
IN AL, DX ; AL gets data from I/0 port address 2000H given by DX.

This is also called Variable Port Addressing.

13)IN destination register, source port
Loads the destination register with the contents of the I/0 port specified by the source.

Source: It is an 1I/0 port address.
If the address is 8-bit it will be given in the instruction by Direct addressing mode.
If it is @ 16 bit address it will be given by DX register using Indirect addressing mode.

Destination: 1t has to be some form of "A” register, in which we will get data from the I/0O device.
If we are getting 8-bit data, it will be AL or AH register.
If we are getting 16-bit data, it will be AX register.

Eg: IN AL, 80H ; AL gets 8-bit data from I/0 port address 80H
IN AX, 80H ; AX gets 16-bit data from I/O port address 80H
IN AL, DX ; AL gets 8-bit data from I/O port address given by DX.
IN AX, DX ; AX gets 16-bit data from I/0O port address given by DX.

14)0UT destination port, source register
Loads the destination I/O port with the contents of the source register.

Eg: OUT 80H, AL ; I/O port 80H gets 8-bit data from AL
OUT 80H, AX ; I/O port 80H gets 16-bit data from AX
OUT DX, AL ; I/O port whose address is given by DX gets 8-bit data from AL

OUT DX, AX ; I/O port whose address is given by DX gets 16-bit data from AX

Scanned with CamScanner

Segment Overriding

In every instruction, a particular segment register is accessed for the base address.
Eg: MOV CL, [S000H] ; CL€ DS:[5000H] as Data Seg is accessed by default

However, we can also override the segment as follows:
Eg: MOVCL, CS:[S5000H] ; Here CL € CS:[5000H], this is Segment Overriding.

By default, the address S000H would have been an offset for the data segment, BUT here we override it
with the Code segment as shown above.

Another example:

MOV BL, [BP] ; BL € SS:[BP] ... Normal
MOV BL, DS:[BP] , BL € DS:[BP] ... Overriding

Scanned with CamScanner

1)

2)

3)

4)

5)

6)

7)

Arithmetic Instructions

D/ADC destination source _) -
:3ds/the source to th; destination and stores the result back in the destination
Source: Register, Memory Location, Immediate Number

Destination: Register .
Both, source and destination have to be of the same size.

ADC also adds the carry into the result.
Eg: ADD AL, 25H : AL € AL + 25H

ADD BL, CL : BL €BL + CL
ADD BX, CX . BX € BX + CcX
ADC BX, CX . BX € BX + CX + Carry Flag

suB/SBB destination, source ‘
It is similar to ADD/ADC except that it does subtraction.

INC destination
Adds “1” to the specified destination.

Destination: Register, Memory Location
Note: Carry Flag is NOT affected.

Eg: INC AX AX €AX + 1
INC BL ;BL(—BL+1
INC BYTE PTR [BX] : Increment the byte pointed by BX in the Data Segment

. j.e. DS:[BX] € DS;[BX] + 1
d by BX in the Data Segment

INC WORD PTR [BX] . Increment word pointe
; {DS:[BX], DS:[BX+1]} € {DS:[BX], DS:[BX+1]}+1

DEC destination
It is similar to INC. Here also Carry Flag is NOT affected.

MUL source(unsigned 8/16-bit register)
If the source is 8-bit, it is multiplied with AL and the result is stored in AX (AH-higher byte, AL-
lower byte)

stored in DX-AX (DX-higher byte,

If the source is 16-bit, it is multiplied with AX and the result is
AX-lower byte)

Source: Register, Memory Location

MUL affects AF, PF, SF and ZF.

Eg:MUL BL . AX € AL x BL
MUL BX . DX-AX € AX x BX
MUL BYTE PTR [BX] - AX € AL x DS:[BX]

IMUL source(signed 8/16-bit register)
Same as MUL except that the source is @ SIGNED number.

DIV source(unsigned 8/16-bit register - divisor)

This instruction is used for UNSIGNED division.

Divides a WORD by a BYTE, OR a DOUBLE WORD by a WORD.
If the divisor is 8-bit then the dividend is in AX register.

After division, the quotient is in AL and the Remainder in AH.
If the divisor is 16-bit then the dividend is in DX-AX registers.
After division, the quotient is in AX and the Remainder in DX.

Scanned with CamScanner

Source: Register, Memory Location © For doubts contact Bharat Sir on 98204 08217
ALL flags are undefined after DIV instruction.

Eg: DIV BL ; AX + BL :- AL € Quotient; AH € Remainder
DIV BX ; {DX,AX} + BX :- AX € Quotient; DX € Remainder

Please Note: If the divisor is 0 or the result is too large to fit in AL (or AX for 16-bit divisor), them
8086 does a Type 0 interrupt (Divide Error).

8) IDIV source(signed 8/16-bit register - divisor)
Same as DIV except that it is used for SIGNED division.

9) NEG destination

This instruction forms the 2's complement of the destination, and stores it back in the destination.
Destination: Register, Memory Location

ALL condition flags are updated.
Eg: Assume AL= 0011 0101 = 35 H then

NEG AL JAL € 1100 1011 = CBH. i.e. AL € 2's Complement (AL)

10)CMP destination, source

This instruction compares the source with the destination.
The source and the destination must be of the same size.

Comparison is done by internally SUBTRACTING the SOURCE form DESTINATION.
The result of this subtraction is NOT stored anywhere, instead the Flag bits are affected.
Source: Register, Memory Location, Immediate Value

Destination: Register, Memory Location

ALL condition flags are updated.

Eg: CMP BL, 55H ; BL compared with 55H i.e. BL — 55H.
CMP CX, BX ; CX compared with BX i.e. CX - BX.
11)CBW [Convert signed BYTE to signed WORD]
This instruction copies sign of the byte in AL into all the bits of AH.
AH is then called sign extension of AL.
No Flags affected.

Eg: Assume
AX = XXXX XXXX 1001 0001
Then CBW gives

AX =1111 1111 1001 0001

12)CWD [Convert signed WORD to signed DOUBLE WORD]
This instruction copies sign of the WORD in AX into all the bits of DX.
DX is then called sign extension of AX.
No Flags affected.

Eg: Assume
AX = 1000 0000 1001 0001
DX = XXXX XXXX XXXX XXXX
Then CWD gives
AX = 1000 0000 1001 0001
DX=111111111111 1111
Note: Both CBW and CWD are used for Signed Numbers.

Scanned with CamScanner

Decimal Adjust Instructions

13)DAA [Decimal Adjust for Addition]
It makes the result in packed BCD form after BCD addition is performed.
It works ONLY on AL register.
All Flags are updated; OF becomes undefined after this instruction.

For AL register ONLY
If D; - Do > 9 OR Auxiliary Carry Flag is set => ADD 06H to AL.

If D; - Ds > 9 OR Carry Flag is set => ADD 60H to AL.

Assume AL = 14H

CL = 28H
Then ADD AL, CL gives
AL = 3CH

Now DAA gives
AL = 42 (06 is added to AL as C > 9)
If you notice, (14)10 + (28) 10 = (42) 10

14)DAS [Decimal Adjust for Subtraction]
It makes the result in packed BCD form after BCD subtraction is performed.
It works ONLY on AL register.
All Flags are updated; OF becomes undefined after this instruction.
For AL register ONLY
If D; - Dy > 9 OR Auxiliary Carry Flag is set => Subtract 06H from AL.
1f D; - D4 > 9 OR Carry Flag is set => Subtract 60H from AL.

Assume AL = 86H

CL = 57H
Then SUB AL, CL gives
AL = 2FH

Now DAS gives
AL = 29 (06 is subtracted from AL as F > 9)
If you notice, (86)10 - (57) 10 = (29) 10

ASCII Adjust Instructions (for the AX register ONLY)

15)AAA [ASCII Adjust for Addition]
It makes the result in unpacked BCD form.
In ASCII Codes, 0 ... 9 are represented as 30 ... 39.
When we add ASCII Codes, we need to mask the higher byte (Eqg: 3 of 39).
This can be avoided if we use AAA instruction after the addition is performed.
AAA updates the AF and the CF; But OF, PF, SF, ZF are undefined after the instruction.
Eg: Assume
AL = 0011 0100 ... ASCII 4.
CL = 0011 1000 ... ASCII 8.
Then ADD AL, CL gives
AL = 01101100
i.e. AL = 6CH ... it is the Incorrect temporary Result

Scanned with CamScanner

Now AAA gives
AL = 0000 0010 ... Unpacked BCD for 2.

Carry = 1 ... this indicates that the answer is 12.

16)AAS [ASCII Adjust for Subtraction]
It makes the result in unpacked BCD form.
In ASCII Codes, O ... 9 are represented as 30 ... 39.
When we subtract ASCII Codes, we need to mask the higher byte (Eg: 3 of 39).
This can be avoided if we use AAS instruction after the subtraction is performed.
AAS updates the AF and the CF; But OF, PF, SF, ZF are undefined after the instruction.
Eqg: Assume
AL = 0011 1001 ... ASCII 9.
CL = 0011 0101 ... ASCII 5.
Then SUB AL, CL gives
AL = 0000 0100
i.e. AL = 04H
Now AAS gives
AL = 0000 0100 ... Unpacked BCD for 4.
Carry = 0 ... this indicates that the answer is 04.

17)AAM [BCD Adjust After Multiplication]
Befare we multiply two ASCII digits, we mask their upper 4 bits.
Thus we have two unpacked BCD operands.
After the two unpacked BCD operands are multiplied, the AAM instruction converts this result into
unpacked BCD form in the AX register.
AAS updates PF, SF ZF; But OF, AF, CF are undefined after the instruction.
Eg: Assume
AL = 0000 1001 ... unpacked BCD 9.
CL = 0000 0101 ... unpacked BCD 5.
Then MUL CL gives
AX = 0000 0000 0010 1101 = 002DH.
Now AAM gives
AX = 0000 0100 0000 0101 = 0405H.
This is 45 in the unpacked BCD form.

18)AAD [Binary Adjust before Division]
This instruction converts the unpacked BCD digits in AH and Al into a Packed BCD in AL.
AAD updates PF, SF ZF; But OF, AF, CF are undefined after the instruction.

Eg: Assume
CL = 0O7H.
AH = 04.
AL = 03.

~ AX = 0403H ... unpacked BCD for (43)o
Then AAD gives

AX = 002BH ... i.e. (43)10

Now DIV CL gives (divide AX by unpacked BCD in CL)
AL = Quotient = 06 ... unpacked BCD
AH = Remainder = 01 ... unpacked BCD

Scanned with CamScanner

1)

2)

3)

4)

5)

LoGIcAL INSTRUCTIONS [BiT MANIPULATION INSTRUCTIONS]

NOT destination
This instruction forms the 1's complement of the destination, and stor
Destination: Register, Memory Location. No Flags affected.
Eg: Assume AL= 0011 0101

NOT AL

es it back in the destination.

+ AL € 1100 1010 ... i.e. AL = 1's Complement (AL)

AND destination, source

This instruction logically ANDs the source with the destination and stores the result in the
destination. Source and destination have to be of the same size.

Source: Register, Memory Location, Immediate Value

Destination: Register, Memory Location

PF, SF, ZF affected; CF, OF € 0; AF becomes undefined.

Eg: AND BL, CL ; BL € BL AND CL

OR destination, source

This instruction logically Ors the source with the destination and stores the result in the
destination. Source and destination have to be of the same size.

Source: Register, Memory Location, Immediate Value

Destination: Register, Memory Location

PF, SF, ZF affected; CF, OF € 0; AF becomes undefined.

Eg: OR BL, CL ; BL € BLORCL

XOR destination, source

This instruction logically X-Ors the source with the destination and stores the result in the
destination. Source and destination have to be of the same size.

Source: Register, Memory Location, Immediate Value
Destination: Register, Memory Location

PF, SF, ZF affected; CF, OF € 0; AF becomes undefined.
Eg: XOR BL, CL ; BL € BL XOR CL

TEST destination, source _
This instruction Io«_:;ically ANDs the source with the destination BUT the RESULT is NOT STORED
ANYWHERE. ONLY the FLAG bits are AFFECTED.

Source: Register, Memory Location, Immediate Value
Destination: Register, Memory Location

PF, SF, ZF affected; CF, OF € 0; AF becomes undefined.
Eg: TEST BL, CL ; BL AND CL; result not stored; Flags a_ﬂ‘ected. ’
Note: Don't forget this instruction because it will be used later in multiprocessor systems!

Scanned with CamScanner

SHIFT INSTRUCTIONS

1) SAL/SHL destination, count
LEFT-Shifts the bits of destination.
MSB shifted into the CARRY.

LSB gets a 0.

Bits are shifted 'count’ number of times.
If count = 1, it is directly specified in the instruction.
If count > 1, it has to be given using CL Register.
Destination: Register, Memory Location. #eiease refer Bharat Sir's Lecture Notes for this
Eg: SALBL, 1 ; Left-Shift BL bits, once.
Assume:
Before Operation: BL = 0011 0011 and CF = 1

Carry Destination

v\ v v
[1J—T ool i1[ilo]o]1]1,

After Operation: BL = 01100110and CF =0

[0 e—— 01 [1JoJoJ1]1To]

More examples:
MOV CL, 05H ; Load number of shifts in CL register.
SALBL, CL ; Left-Shift BL bits CL (5) number of times.

2) SHR destination, count
RIGHT-Shifts the bits of destination.
MSB gets a 0 (.. Sign is lost).

LSB shifted into the CARRY.

Bits are shifted 'count' number of times.
If count is 1, it is directly specified in the instruction.
If count > 1, it has to be given using CL register.

Eg: SHR BL, 1 ; Right-5Shift BL bits, once.

Scanned with CamScanner

3)

Assume:

Before Operation: BL = 0011 0011 andCF =0

Destination Carry

N N/ N
0—>s[0Jo0[1[1]0J0[1[1]—>[0]

After Operation: BL = 00011 1001 and CF =1

[oJoJo[1T1JoJo[1]—>[1]

SAR destination, count
RIGHT-Shifts the bits of destination.

MSB placed in MSB itself (.. Sign is preserved).
LSB shifted into the CARRY.

Bits are shifted 'count' number of times.

If count is 1, it is directly specified in the instruction.

If count > 1 it has to be given using CL regiSter. © reaouses contact smaras sie on s8204 0217
Destination: Register, Memory Location

Eg: SARBL, 1 ; Right-Shift BL bits, once.

Assume:
Before Operation: BL = 0011 0011 and CF = 0

Destination Carry

| NN
~[oJoJi[1JoJof1iTa]—>[0]

After Operation: BL = 0001 1001 andCF =1

[oJoJoJi[1loJoJ1]—>[1]

Scanned with CamScanner

ROTATE INSTRUCTIONS

1) ROL destination, count

2)

LEFT-Shifts the bits of destination.
MSB shifted into the CARRY.

MSB also goes to LSB,

Bits are shifted 'count' number of times.

If count = 1, itis directly specified in the instruction.
If count > 1, it has to be loaded in the CL register, and CL gives the count in the instruction.

Destination: Register, Memory Location
; Left-Shift BL bits once.

Eg: ROLBL, 1
Carry Destination

V' Y ANy
__[DFIDG'DSID4'D3I_DZ'D1IDU‘l

More examples:
MOV CL, 05H
ROL BL, CL

; Load number of shifts in CL register.
; Left-Shift BL bits CL (5) number of times.,

ROR destination, count
RIGHT-Shifts the bits of destination.
LSB shifted into the CARRY.

LSB also goes to MSB.

Bits are shifted 'count’ number of times.

If count = 1, it is directly specified in the instruction.
If count > 1, it has to be loaded in the CL register, and CL gives the count in the instruction

Eg:
RORBL, 1 ; Right-Shift BL bits once.
Carry Destination
N LNy
E a,D7lelelDalD3]Dle1IDU?TI

Scanned with CamScanner

3) RCL destination, count
LEFT-Shifts the bits of destination.
MSB shifted into the Carry Flag (CF).
CF goes to LSB.
Bits are shifted 'count’ number of times.
If count = 1, it is directly specified in the instruction.
If count > 1, it has to be loaded in the CL register, and CL is specified as the count in the

instruction.
Destination: Register, Memory Location

Eg: RCLBL, 1 : Left-Shift BL bits once.

Carry Destination

YOIV

v
| ﬁ)?IDeIDSID4l03IDz|01IDLk]\

4) RCR destination, count
RIGHT-Shifts the bits of destination.
LSB shifted into the CF.
CF goes to MSB.
Bits are shifted 'count' number of times.
If count = 1, it is directly specified in the instruction.
If count > 1, it has to be loaded in the CL register, and CL is specified as the count in the

instruction.
Destination: Register, Memory Location
Eg:
RCRBL, 1 ; Right-Shift BL bits once.
Carry Destination

v NN
I:)I_D7106|DSID4|03|D2|01|Dn1j

More examples:
MOV CL, 05H ; Load number of shifts in CL register.
RCR BL, CL : Right-Shift BL bits CL (5) number of times.

Scanned with CamScanner

PROGRAM EXECUTION AND TRANSFER INSTRUCTIONS

These instructions cause a branch in the program sequence.
There are 2 main types of branching:
i. Near branch
ii. Far Branch

i. Near Branch
This is an Intra-Segment Branch i.e. the branch is to a new location within the current segment
only.
Thus, only the value of IP needs to be changed.
If the Near Branch is in the range of —128 to 127, then it is called as a Short Branch.

ii. Far Branch
This is an Inter-Segment Branch i.e. the branch is to a new location in a different segment.
Thus, the values of CS and IP need to be changed.

JMP (unconditional Jump)
INTRA-Segment (NEAR) JUMP
The Jump address is specified in two ways:
1) INTRA-Segment Direct Jump
The new Branch location is specified directly in the instruction
The new address is calculated by adding the 8 or16-bit displacement to the IP.
The CS does not change.
A +ve displacement means that the Jump is ahead (forward) in the program.
A -ve displacement means that the Jump is behind (backward) in the program.
It is also called as Relative Jump.
Eg: JMP Prev . IP € offset address of "Prev”.
JMP Next . IP € offset address of "Next”.

2) INTRA-Segment Indirect Jump
The New Branch address is specified indirectly through a register or a memory location.
The value in the IP is replaced with the new value.
The CS does not change.
Eg: JMP WORD PTR [BX] : IP € {DS:[BX], DS: [BX+1]}

INTER-Segment (FAR) JUMP
The Jump address is specified in two ways:
3) INTER-Segment Direct Jump
The new Branch location is specified directly in the instruction
Both CS and IP get new values, as this is an inter-segment jump.
Eg: Assume NextSeg is a label pointing to an instruction in a different segment.
JMP NextSeg . CS and IP get the value from the label NextSeg.
4) INTER-Segment Indirect Jump
The new Branch location is specified indirectly through a register or a memory location.
Both CS and IP get new values, as this is an inter-segment jump.
Eg:JMP DWORD PTR [BX] . IP € {DS:[BX], DS: [BX+1]},
: CS € {DS:[BX+2], DS:[BX+3]}

Scanned with CamScanner

JCondition (Conditional Jump)

This is a conditional branch instruction.

1f condition is TRUE, then it is similar to an INTRA-Segment Direct Jump.

If condition is FALSE, then branch does not take place and the next sequential instruction is executed.
The destination must be in the range of -128 to 127 from the address of the instruction (i.e. ONLY
SHORT Jump).

Eg: JNC Next : Jump to Next If Carry Flag is not set (CF = 0).

The various conditional jump instructions are as follows:

Mnemonic | Description | Jump Condition
Common Operations

JC Carry CF=1

IJNC Not Carry CF=0

JE/IZ Equal or Zero ZF =1

INE/INZ Not Equal or Not Zero ZF =10

JP/IPE Parity or Parity Even PF=1

INP/IPO Not Parity or Parity Odd PF =0
Signed Operations

10 Overflow OF =1

IJNO Not Overflow OF =0

]S Sign SF=1

INS Not Sign SF =

JL/INGE Less (SF Ex-Or OF) = 1

JGE/INL Greater or Equal (SF Ex-Or OF) = 0

JLE/ING Less or Equal ((SF Ex-Or OF) + ZF) = 1

JG/INLE Greater ((SF Ex-Or OF) + ZF) =0
Unsigned Operations

JB/INAE Below CF=1

JAE/INB Above or Equal CF=0

JBE/INA Below or Equal (CF Ex-Or ZF) = 1

JA/INBE Above (CFEx-Or ZF) =0

CALL (unconditional CALL)

CALL is an instruction that transfers the program control to a sub-routine, with the intention of coming
back to the main program.

Thus, in CALL 8086 saves the address of the next instruction into the stack before branching to the
sub-routine.

At the end of the subroutine, control transfers back to the main program using the return address from
the stack.

There are two types of CALL: Near CALL and Far CALL.

INTRA-Segment (NEAR) CALL
The new subroutine called must be in the same segment (hence intra-segment).
The CALL address can be specified directly in the instruction OR indirectly through Registers or
Memory Locations.
The following sequence is executed for a NEAR CALL:
i. 8086 will PUSH Current IP into the Stack.
ii. Decrement SP by 2.
iii. New value loaded into IP.

Scanned with CamScanner

iv. Control transferred to a subroutine within the same segment.
Eg: CALL subAdd ; {SS:[SP-1], SS:[SP-2]} € IP, SP € 5P - 2,
: IP € New Offset Address of subAdd.

INTER-Segment (FAR) CALL
The new subroutine called is in another segment (hence inter-segment).
Here CS and IP both get new values.
The CALL address can be specified directly OR through Registers or Memory Locations.
The following sequence is executed for a Far CALL:
i. PUSH CS into the Stack.
ii. Decrement SP by 2.
iii. PUSH IP into the Stack.
iv. Decrement SP by 2.
v. Load CS with new segment address.
vi. Load IP with new offset address.
vii. Control transferred to a subroutine in the new segment.
Eg: CALL subAdd : {SS:[SP-1], 5S:[SP-2]} € CS, SP € SP - 2,
: {SS:[SP-1], SS:[SP-2]} € CS, SP € SP - 2,
: CS € New Segment Address of subAdd,
; IP € New Offset Address of subAdd.

There is NO PROVISION for Conditional CALL.

RET --- Return instruction
RET instruction causes the control to return to the main program from the subroutine.

Intrasegment-RET

Eg: RET . IP € SS:[SP], SS:[SP+1]
:SP & SP + 2
RET n . IP & SS:[SP], SS:[SP+1]

; SP€ SP+2+n

Intersegment-RET

Eg: RET ; IP & SS:[SP], SS:[SP+1]
; CS € SS:[SP+2], SS:[SP+3]
i SP <SP +4
RET n ;

; IP &« SS:[SP], SS:[SP+1]
; CS €« SS:[SP+2], SS:[SP+3]
i SPE€SP+4+n

Please Note: The pr.ogra.mr_ner writes the intra-seg and Inter-seg RET instructions in the same way. It is
the assembler, which distinguishes between the two and puts the right opcode. ‘

#Please refer Bharal Sir's Lecture Notes for this

Scanned with CamScanner

Differentiate between

JMP INSTRUCTION

CALL INSTRUCTION

JMP instruction is used to jump to a
new location in the program and
continue

Call instruction is used to invoke a
subroutine, execute it and then
return to the main program.

A jump simply puts the branch
address into IP.

A call first stores the return address
into the stack and then loads the
branch address into IP.

In 8086 Jumps can be either
unconditional or conditional.

In 8086, Calls are only unconditional.

Does not use the stack

Uses the stack

Does not need a RET instruction.

Needs a RET instruction to return back
to main program.

Differentiate between

PROCEDURE (FUNCTION)

MACRO

A procecdure (Subroutine/ Function) is a
set of instruction needed repeatedly by
the program. It is stored as a
subroutine and invoked from
several places by the main
program.

A Macro is similar to a procedure but is
not invoked by the main program.
Instead, the Macro code is pasted into
the main program wherever the
macro name is written in the main
program.

A subroutine is invoked by a CALL
instruction and control returns by a RET
instruction.

A Macro is simply accessed by writing
its name. The entire macro code is
pasted at the location by the assembler.

Reduces the size of the program

Increases the size of the program

Executes slower as time is wasted to
push and pop the return address in the
stack.

Executes faster as return address is
not needed to be stored into the stack,
hence push and pop is not needed.

Depends on the stack

Does not depend on the stack

Scanned with CamScanner

weey Iteration Control Instructions

These instructions cause a series of instructions to be executed repeatedly.

The number of iterations is loaded in CX register.

CX is decremented by 1, after every iteration. Iterations occur until CX = 0.

The maximum difference between the address of the instruction and the address of the Jump can be
127.

1) LOOP Label
Jump to specified label if CX not equal to 0; and decrement CX.
Eg: MOV CX, 40H
BACK: MOV AL, BL
ADD AL, BL

MOV BL, AL
LOOP BACK ;Do CX & CX - 1.
; Go to BACK if CX not equal to 0.

2) LOOPE/LOOPZ Label (Loop on Equal / Loop on Zero)
Same as above except that looping occurs ONLY if Zero Flag is set (i.e. ZF = 1)
Eg: MOV CX, 40H
BACK: MOV AL, BL
ADD AL, BL

MOV BL, AL
LOOPZ BACK ,DoCX €CX - 1.
; Go to BACK if CX not equal to 0 and ZF = 1.

3) LOOPNE/LOOPNZ Label (Loop on NOT Equal / Loop on NO Zero)
Same as above except that looping occurs ONLY if Zero Flag is reset (i.e. ZF = 0)
Eg: MOV CX, 40H
BACK: MOV AL, BL
ADD AL, BL

MOV BL, AL
LOOPZ BACK ; DoCX & CX - 1.
; Go to BACK if CX not equal to 0 and ZF = 0.

Scanned with CamScanner

Processor Control / Machine Control Instructions
(these are instructions that directly operate on Flag Reg)

Type 2)
In the exam first explain the following instructions: PUSHF, POPF, LAHF and SAHF

For Carry Flag

1) STC
This instruction sets the Carry Flag. No Other Flags are affected.

2) CLC
This instruction clears the Carry Flag. No Other Flags are affected.

3) CMC
This instruction complements the Carry Flag. No Other Flags are affected.

For Direction Flag

4) STD
This instruction sets the Direction Flag. No Other Flags are affected.

5) CLD
This instruction clears the Direction Flag. No Other Flags are affected.

For Interrupt Enable Flag

6) STI
This instruction sets the Interrupt Enable Flag. No Other Flags are affected.

7) CLI
This instruction clears the Interrupt Enable Flag. No Other Flags are affected.

Note: There is no direct way to alter TF. It can be altered through program as follows:

To set TF:
PUSHF ; push contents of Flag register into the stack
POP BX : pop contents of flag reg from the stack-top into BX
OR BH, 01H . set the bit corresponding to TF, in the BH register
PUSH BX ; push the modified BX register into the stack
POPF : pop the modified contents into flag register.

To reset TF:
PUSHF : push contents of Flag register into the stack
POP BX : pop contents of flag reg from the stack-top into BX
AND BH, FEH . reset the bit corresponding to TF, in the BH register
PUSH BX . push the modified BX register into the stack

POPF : pop the modified contents into flag register.

Scanned with CamScanner

Type 3)

1)

2)

External Hardware Synchronization Instructions

ESC
This is an 8086 instruction-prefix used to indicate that the current instruction is for the 8087

NDP.

We write a homogeneous program for th

Instructions are fetched b\ffj 80986 into its ZS\;L?E?FOCESSOFS 8086 and 8057
8087 duplicates the instruction queue of 8086 and monitors this queue
When an instruction with ESC prefix (binary code 11011) is encounte’re
hence it executes the instruction.

8086 treats the instruction as NOP.

ESC has to be written before each 8087 instruction.

d, 8087 is activated, and

WAIT

This instruction is used to synchronize 8086
“1” on its BUSY o/p line connected to the TEST i/p of the uP.

with the 8087 Co-Processor via the TEST input pin of

8086. Whenever 8087 is busy it puts a

ction makes the pP check the TEST pin.
derstands that 8087 is busy and so it

The WAIT instru
“1” on it, 8086 un

If the uP checks the TEST pin and finds a

enters wait state. Here it does no processing.

It can come out of this idle state in 2 ways:

TEST inputis made low

i.e. 8087 is no longer busy.
This takes 8086 completely out of the IDLE state.

rupt, and then re-enters the

valid Interrupt on INTR or NMI '
tes the ISR for the inter
hed into the stack before executing

In this case 8086 exits wait state, execu SR
WAIT state. (This is because the address of the WAIT instruction is what was pus

the ISR.)
ction, we can ensure that 8

te a WAIT instruction pefore every §087 instru
instruction whenever it arrives.

ii.
087 is

Thus if we wri

ready for executing its own
us 8087

WAIT can also be written pefore an 8086 instruction that requires the result of a previo

operation.

Scanned with CamScanner

3) LOCK
This is an 8086 instruction prefix.
It prevents any external bus master from taking control of the system bus during execution of

the instruction, which has a LOCK prefix.
It causes 8086 to activate the LOCK signal so that no other bus master takes control of the system

bUS. © For doubts contact Bharat Sir on 98204 08217

4) NOP
There is no operation performed while executing this instruction.
8086 requires 3 T-States for this instruction.
It is mainly used to insert time delays, and can also be used while debugging.

5) HLT
This instruction causes 8086 to stop fetching any more instructions.

8086 enters Halt state.
8086 can come out of this halt state only if there is a valid hardware interrupt (NMI or INTR) or

by reset.

Scanned with CamScanner

weesy Interrupt Control Instructions

1) INT Type

This instruction causes an interrupt of the given type. The 'Type’ can be a number between 0 ... 255.
The following action takes place:

i. PUSH Flag Register onto the Stack. SP decremented by 2.

ii. IF and TF are cleared. No other flags are affected.

iii. PUSH CS onto the Stack. SP decremented by 2.

iv. PUSH IP onto the Stack. SP decremented by 2. .. In all SP decremented by 6.

v. New value of IP taken from location type x 4.

Eg: INT 1 ; IP € {[00004] and [00005]} (as 1 x 4 = 00004H)
vi. New value of CS taken from location (type x 4) + 2.
Eg: INT 1 ; CS € {[00006] and [00007]}

Execution of ISR begins from the address formed by new values of CS and IP.

2) INTO (Interrupt on Overflow)

This instruction causes an interrupt of type 4, ONLY if Overflow Flag (OF) is set.
The above sequence is followed and the control is transferred to the location pointed by 00010H.
Eg: INTO ; If OF = 1 then execute INT 4.

Please Note:- This is INTO (O for Overflow) and NOT INT O (i.e. Type 0 ==> Zero Divide Interrupt).

3) IRET (Return from ISR)

This instruction causes the 8086 to return to the main program from an ISR.

The following action takes place:

i. POP IP from the Stack.
SP incremented by 2.

iil. POP CS from the Stack.
SP incremented by 2.

iii. POP Flag Register from the Stack.
SP incremented by 2.
. In all SP incremented by 6.

Execution of the Main Program continues from the address formed values of CS and IP restored
from the stack.

Please Note:- The original value of TF and IF are restored from the Stack. Also note that to come back

from an ISR, the programmer must use the IRET instruction and not the normal RET instruction as
the RET instruction will not POP back the Flag.

Scanned with CamScanner

Type 5)

String Instructions of 8086 (Very Important X 10m)

A String is a series of bytes stored sequentially in the memory. String Instructions operate on such

"Strings".

The Source String is at a location pointed by SI in the Data Segment.

The Destination String is at a location pointed by DI in the Extra Segment.

The Count for String operations is always given by CX.

Since CX is a 16-bit register we can transfer max 64 KB using a string instruction.

SI and/or DI are incremented/decremented after each operation depending upon the direction
flag “DF” in the flag register.

If DF = 0, it is auto increment. This is done by CLD instruction.

If DF = 1, it is auto decrement. This is done by STD instruction.

1)MOVS: MOVSB/MOVSW (Move String)

It is used to transfer a word/byte from data segment to extra segment.
The offset of the source in data segment is in SI.

The offset of the destination in extra segment is in DL

SI and DI are incremented / decremented depending upon the direction flag.

Eg: MOVSB : ES:[DI] € DS:[SI] ... byte transfer
. SI € SI 1 ... depending upon DF
: DI ¢ DI + 1 ... depending upon DF

MOVSW . {ES:[DI], ES:[DI + 1]} € {DS:[SI], DS:[SI + 1]}
Sl €SI+2
DI €DI+2

2)LODS: LODSB/LODSW (Load String)

It is used to Load AL (or AX) register with a byte (or word) from data segment.
The offset of the source in data segment is in SI.
Sl is incremented / decremented depending upon the direction flag (DF).

Eg: LODSB : AL € DS:[SI] ... byte transfer
. SI ¢ SI +1 ... depending upon DF

LODSW . AL € DS:[SI]; AH € DS:[SI + 1]
; SI €SI+2

Scanned with CamScanner

3)STOS: STOSB/STOSW (Store String)

It is used to Store AL (or AX) into a byte (or word) in the extra segment.
The offset of the source in extra segment is in DI.

DI is incremented / decremented depending upon the direction flag (DF).

Eg: STOSB ; ES:[DI] € AL ... byte transfer
» DI € DI 1 ... depending upon DF

STOSW » ES:[DI] € AL; ES:[DI+1] € AH ... word transfer

DI € DI 2 ... depending upon DF
4)CMPS: CPMSB/CMPSW (Compare String)

It is used to compare a byte (or word) in the data segment with a byte (or word) in the extra
segment.

The offset of the byte (or word) in data segment
segment is in DI.

SI and DI are incremented / decremented de
Comparison is done b
from Data segment.

The Flag bits are affected, but the result is not stored anywhere.

Is in SI. The offset of the byte (or word) in extra

pending upon the direction flag.
y subtracting the byte (or word) from extra segment from the byte (or word)

Eg :CMPSB ; Compare DS:[SI] with ES:[DI] ... byte operation
+ SI €SI+ 1 ... depending upon DF
: DI € DI 1 ... depending upon DF
CMPSW

; Compare {DS:[SI], DS:[SI+1]}

; with {ES:[DI], ES:[DI+1]}

i SI €SI +2 ... depending upon DF
» DI € DI +2 .. depending upon DF

5)SCAS: SCASB/SCASW (Scan String)

It is used to compare the contents of AL (or AX) with a byte (or word) in the extra segment.
The offset of the byte (or word) in extra segment is in DI.

DI is incremented / decremented depending upon the direction fla
subtracting a byte (or word) from e
result is not stored anywhere.

g (DF). Comparison is done by
xtra segment from AL (or AX). The Flag bits are affected, but the

Eg:SCASB ; Compare AL with ES:[DI] ... byte operation

DI €< DI +1 ... depending upon DF

SCASW ; Compare {AX} with {ES:[DI], ES:[DI+1]}
;DI € DI+ 1 .. depending upon DF

Scanned with CamScanner

6)

7)

REP (Repeat prefix used for string instructions)

This is an instruction prefix, which can be used in string instructions.

It can be used with string instructions only.

It causes the instruction to be repeated CX number of times.

After each execution, the SI and DI registers are incremented/decremented based on the DF
(Direction Flag) in the Flag register and CX is decremented.

i.e. DF = 1; SI, DI decrements. #riease refer Bharat Sir's Lecture Notes for this ..

Thus, it is important that before we use the REP instruction prefix the following steps must be carried
out:

CX must be initialized to the Count value. If auto decrementing is required, DF must be set
using STD instruction else cleared using CLD instruction.

EG: MOV CX, 0023H
CLD
REP MOVSB

The above section of a program will cause the following string operation
ES:[DI] € DS:[SI], SI €SI+ 1, DI € DI +1, CX € Cx -1
to be executed 23H times (as CX = 23H) in auto incrementing mode (as DF is cleared).

REPZ/REPE (Repeat on Zero/Equal)

It is a conditional repeat instruction prefix.It behaves the same as a REP instruction provided the
Zero Flag is set (i.e. ZF = 1).It is used with CMPS instruction.

© For doubts contact Bharat Sir on 98204 08217

REPNZ/REPNE (Repeat on No Zero/Not Equal)

It is a conditional repeat instruction prefix.It behaves the same as a REP instruction provided the
Zero Flag is reset (i.e. ZF = 0).1t is used with SCAS instruction.

Please Note: 8086 instruction set has only 3 instruction prefixes :

1) ESC (to identify 8087 instructions)
2) LOCK (to lock the system bus during an instruction)
3) REP (to repeatedly execute string instructions)

For a question on instruction prefixes (asked repeatedly), explain the above in detail.

Scanned with CamScanner

INSTRUCTION FORMAT TEMPLATE OF 8086

Instructions in 8086 can be of size 1 byte to 6 bytes.

The distribution of the bytes is as follows

byte 716|5|4(3|2

opcode

[optional]

[optional]

[optional]

O 0| AW IN|=

[optional]

Opcode Byte
The first byte is called the “opcode byte”.

Opcode byte

Addressing mode byte

low disp, addr, or data

high disp, addr, or data
low data

high data

It has a 6-bit opcode that indicates the operation to be performed.

It has two more bits “d” and “w”

d: direction

1 = data moves from operand specified by r/m to operand specified by reg.
0 = data moves from operand specified by reg to operand specified by r/m.

w: word/ byte
1: data is a word: 16-bits
0: data is a byte: 8-bits

Addressing Mode Byte
mod (2 bits):

These are called "mode” bits. They decide how r/m is interpreted.

00: r/m is a memory operand, but no displacement
01: r/m is a memory operand, with 8-bit displacement
10: r/m is a memory operand, with 16-bit displacement

11: r/m is a register operand

Scanned with CamScanner

reg (3 bits):

This specifies the register used as the first operand, which may act as source or

destination depending upon the “d”(direction) bit.

r/m (3 bits):

This specifies the second operand whi

REG w=0 W=1
000 AL #7 AX
001 CL CX
010 OL DX
on BL BXx
100 AH SP
101 CH BP
110 DH Sl
11 H |

8 L D

ch may either be a register or a memory location

depending upon the “mod” bits.
MOD

R/M 00 01 10 11
=0 W=1
000 [BX]+[SI] [BX]+[SI]+d8 [BX]+[SI]+d1l6 | AL AX
001 [BX]+[DI] [BX]+[DI]+d8 [BX]+[DI]+d16 CL cX
010 [BP]+[SI] [BP]+[SI]+d8 [BP]+[SI]+d1l6 DL DX
011 [BP]+[DI] [BP]+ [DI]+d8 [BP]+[DI]+d16 BL BX
100 [SI] [S1I]+d8 [SI]+d1l6 AH SP
101 [DI] [DI]+d8 [DI]+d1lé CH BP
110 16-bit address [BP]+d8 [BP]+d1l6 DH SI
111 [BX] [BX]+d8 [BX]+d1l6 BH DI

Scanned with CamScanner

ASSEMBLER DIRECTIVES / PSEUDO OPCODES

Assembly language has 2 types of statements:

- Executable: Instructions that are translated into Machine Code by the assembler.

. Assembler Directives:

Statements that direct the assembler to do some special task.
No M/C language code is produced for these statements.

Their main task is to inform the assembler abou
program, to reserve appropriate space for data
Some of the assembler directives are listed bel

t the start/end of a segment, procedure or
storage etc.

ow

. DB (Define Byte) » Used to define a Byte type variable.
Eg: SUM DB 0

: Assembler reserves 1 Byte of memory for the variable
; named SUM and initialize it to 0.

. DW (Define Word) » Used to define a Word type variable (2 Bytes).

- DD (Double Word) ; Used to define a Double Word type variable (4 Bytes).

- DQ (Quad Word) ; Used to define a Quad Word type variable (8 Bytes).

- DT (Ten Bytes) ; Used to define 10 Bytes to a variable (10 Bytes).
. DUP() ; Copies the contents of the bracket followed by this

; keyword into the memory location specified before it.
Eg: LIST DB 10 DUP (0) ; Stores LIST as a series of 10 bytes initialized to Zero.

. SEGMENT » Used to indicate the beginning of a segment.

. ENDS ; Used to indicate the end of a segment,
. ASSUME ; Associates a logical segment with a processor segment.
Eg: Assume CS:Code ; Makes the segment "Code" the actual Code Segment.
10.PROC ; Used to indicate the beginning of a procedure.
11.ENDP ; Used to indicate the end of a procedure.
12.END ; Used to indicate the end of a program.
13.EQU

; Defines a constant

E.g.:: AREA EQU 25H ; Creates a constant by the name AREA with a value 25H

Do remember, in the class, you have been clearly made to understand the difference between using a
variable and using a constant.

Scanned with CamScanner

14. EVEN / ALIGN ; Ensures that the data will be stored by the assembler in the memory in an aligned
form. Aligned data works faster as it can be accessed in One cycle. Misaligned data, though is valid,
requires two cycles to be accessed hence works slower,

15. OFFSET ; Can be used to tell the assembler to simply substitute the offset address of any variable.
E.g.:: MOV Si, OFFSET Stringl ; SI gets the offset address of Stringl

16. Start ; It's the label from where the microprocessor to start executing the program

17. Model Directives
.MODEL SMALL ; All Data Fits in one 64 KB segment.
All Code fits in one 64 KB Segment

.MODEL MEDIUM ; All Data Fits in one 64 KB segment.
Code may be greater than 64 KB

.MODEL LARGE ; Both Data and Code may be greater than 64 KB

Combined Example:

Data SEGMENT
LIST DB 10 DUP (0); Stores LIST as a series of 10 bytes initialized to zero
Data ENDS

Code SEGMENT
Assume CS: Code, DS: Data ; Makes Code - Code Segment
; and Data - Data Segment,

Start:

Code ENDS
END Start

There are many more assembler directives
Please refer class notes and VIVA booklet for the same.

Scanned with CamScanner

INT 21H (DOS Interrupt)
Important for College Practicals and Viva

1)
2)
3)

4)
5)

DOS provides various internal interrupts which are used by the system programmer.
The most commonly used interrupt is INT 21H. #For doubts contact Bharat Sir on 98204 08217

It invokes inbuilt DOS functions which can be used to perform tasks such as reading a user input

char from the screen, displaying result on the screen, exiting the program etc.

While calling the INT21H Dos interrupt, we must first assign a correct value in AH register.
The value in the AH register selects the INT 21H function which is required by the user.
The most commonly used INT 21H functions are as shown:

Task Method Comment
Takes the user input character from
the screen.
How to input a character from | Mov AH, 01H Returns the ASCII value of the
the screen INT 21H character in AL register.
If AL=0, then a control key was
pressed.
OAH is the parameter for the input
How to input a string from the Mov AH, OA.H string function.
LEA DX, string ; -
screen INT 21H The string will be stored from the
offset address given by DX.
02H is the parameter for the display
How to display a character on :z: g:_" ghz;:_ char function.
the screen ! DL should contain the char to be
INT 21H .
displayed.
0%H is the parameter for the display
How to display a string on the LMEO: 3:';3: string function.
screen ! 9 DX should contain the offset address
INT 21H :
of the output string.
4CH is the parameter for the
terminate function.
Mov AH, 4CH ;
How to terminate the program | Mov AL, 00H The ’e“f”‘ code = placed by the
INT 21H system in AL register.

If AL is OOh then the program
terminated without an error.

Scanned with CamScanner

PARAMETER PASSING TECHNIQUES USED IN ASSEMBLY LANGUAGE PROGRAMMING

A Parameter is any value passed by the main program to the subroutine.

Passing parameters makes the subroutine more flexible and can tremendously enhance the usage of
the subroutine.

E.g.:: If a subroutine always finds factorial of 10, it is rigid. But if it can find factorial of "N” and “N" can
be any number passed by the main program, then the same subroutine can find factorial of any number
and hence becomes more usable.

There are 4 popular methods of passing parameters to subroutines.

1. USING REGISTERS

Here, the main program stores the parameter into a register like DL, and Calls the Subroutine.
Now Subroutine takes the parameter value form DL register and works on it.

Main:

MoV DL, 25H ; {parameter value 25H stored in DL)

Call Sub

Sub:

MOV AL, DL ; Subroutine takes parameter value from DL Register
RET ; Return to the main Program

Advantage: Simple to use
Drawback: Can not be used if there are multiple parameters as there are very few registers.

2. UsSING MEMORY LOCATIONS DIRECTLY
Here, the main program stores the parameter into a memory location like [4000H], and Calls

the Subroutine.
Now Subroutine takes the parameter value form memory location [4000H] and works on it.

Main:

MOV [4000H], 25H; (parameter value 25H stored at location 4000H)

Call Sub

Suk:

MOV AL, [4000H] ; Subroutine takes parameter value from location {(4000H]
RET ; Return to the main Program

Advantage: Can pass many parameters as there is abundant memory.
Drawback: Uses a fixed memory location hence rigid.

Scanned with CamScanner

USING MEMORY LOCATIONS INDIRECTLY

Here, the main program stores the parameter into a memory location pointed indirectly by a
register like SI. The interesting point to note is that the location can be any location chosen by
the programmer instead of being pre-determined by the subroutine.

The Subroutine will take the parameter value from the memory location pointed by SI.

Main:

MOV SI, 4000H ; We are choosing location 400011 1o pass the parameter.
; Could have been any other location as well,

MOV [SI], 25H ; (parameter value 25H stored at location pointed by SI)

Call Sub

Sub:

MOV AL, [SI] ; Subroutine takes parameter value from any location pointed by SI
RET ; Return to the main Program

Advantage: Can pass many parameters. Moreover, the location can be chosen by the person
calling the subroutine, instead of being pre-decided by the subroutine.

Hence more flexible than direct addressing.

Drawback: More complex than direct addressing.

USING STACK

Here, the main program Pushes the parameter into the stack and Calls the subroutine.

The interesting point to note is, during “CALL"”, microprocessor pushes the return address into
the stack. This will be placed above the parameter, which we stored in the Stack.

Hence, the subroutine will have to first POP the return address into some register.

Thereafter the subroutine will POP the parameter and use it.

Before returning, the subroutine must first Push the return address into the stack and only
then execute the RET instruction. (Don't worry, its much simpler than it sounds ©©©)

Main:

MOV B¥, 1234H ; Put Parameter 1234H into BX.

PUSH BX i (parameter value 1234H Pushed into top of stack)

Call Sub ; Now mucroprocessor pushes return address above the parameter into the stack
Sub:

POE CX i Pop Return address into CX

POE AX i Pop parameter into AX and use it

PUSH CX i Push back return address into stack

RET ;i Return to main program

Advantage: Can pass many parameters as stack can be very large.
Drawback: Most Complex method.

Scanned with CamScanner

8086 INTERRUPTS

+ Aninterrupt is a special condition that arises during the working of a pP.
+ The pP services it by executing a subroutine called Interrupt Service Routine (ISR).
+ There are 3 sources of interrupts for 8086:

External Signal (Hardware Interrupts):

These interrupts occur as signals on the external pins of the pP.
8086 has two pins to accept hardware interrupts, NMI and INTR.

Special instructions (Software Interrupts):

These interrupts are caused by writing the software interrupt instruction INTn where "n” can be
any value from 0 to 255 (OOH to FFH).
Hence all 256 interrupts can be invoked by software.

Condition Produced by the Program (Internally Generated Interrupts):

8086 is interrupted when some special conditions occur while executing certain instructions in the
program.
Eg: An error in division automatically causes the INT 0 interrupt.

INTERRUPT VECTOR TABLE (IVT) {10M --- IMPORTANT }

The IVT contains ISR address for the 256 interrupts.

Each ISR address is stored as CS and IP.

As each ISR address is of 4 bytes (2-CS and 2-1P), each ISR address requires 4 locations to be stored.
There are 256 interrupts: INT 0 ... INT 255 .. the total size of the IVT is 256 x 4 = 1KB.

The first 1KB of memory, address 00000 H ... 003FF H, are reserved for the IVT.

Whenever an interrupt INT N occurs, uP does N x 4 to get values of IP and CS from the IVT and

hence perform the ISR.

Scanned with CamScanner

1 KB (256 * 4)

00000 H
00001 H
00002 H
00003 H

00004 H

00007 H
00008 H

00008 H
0000C H

0000F H
00010 H

00013 H
00014 H

0007F H
00080 H

Ip Lower

1P higher

CS LGWE_F_

CS sigher

INT O --- Divide error

INT 1 --- Single Stepping

INT 2 --- NMI

INT 3 --- Breakpoint

INT 4 --- Interrupt on
Overflow

INTS

--- Reserved
INT 31
INT 32

--=- User

) Defined

INT 255

Dedicated Interrupts

Scanned with CamScanner

DEeDICATED INTERRUPTS (INT 0... INT 4)

1)

2)

3)

4)

5)

INT O (Divide Error)
This interrupt occurs whenever there is division error
i.e. when the result of a division is too large to be stored.

This condition normally occurs when the divisor is very small as compared to the dividend or the
divisor iS Zero0. #Rrefer example from Bharat Sir's lecture nates.

Its ISR address is stored at location 0 x 4 = 00000H in the IVT.

INT 1 (Single Step)

The pP executes this interrupt after every instruction if the TF is set.

It puts pP in Single Stepping Mode i.e. the uP pauses after executing every instruction.
This is very useful dUI'iﬂg debugging #Refer example from Bharat Sir's lecture notes...

Its ISR generally displays contents of all registers.

Its ISR address is stored at location 1 x 4 = 00004H in the IVT.

INT 2 (Non Maskable Interrupt)
The pP executes this ISR in response to an interrupt on the NMI line.
Its ISR address is stored at location 2 x 4 = 00008H in the IVT.

INT 3 (Breakpoint Interrupt)

This interrupt is used to cause Breakpoints in the program.

It is caused by writing the instruction INT 03H or simply INT.

It is useful in debugging large programs where Single Stepping is inefficient.
Its ISR is used to display the contents of all registers on the screen.

Its ISR address is stored at location 3 x 4 = 0000CH in the IVT.

INT 4 (Overflow Interrupt)

This interrupt occurs if the Overflow Flag is set AND the pP executes the INTO instruction
(Interru pt on OVEFflOW) . #Show example from Bharat Sir's lecture notes..

It is used to detect overflow error in signed arithmetic operations.

Its ISR address is stored at location 4 x 4 = 00010H in the IVT.

Please Note: INT O ... INT 4 are called as dedicated interrupts as these interrupts are dedicated for the
above-mentioned special conditions.

Scanned with CamScanner

RESERVED INTERRUPTS

INT S ... INT 31 _ .
These levels are reserved by INTEL to be used in higher processors like 80386, Pentium etc. They

are not available to the user.

User defined Interrupts

INT 32 ... INT 255
These are user defined, software interrupts.
ISRs for these interrupts are written by the users to service various user defined conditions.
These interrupts are invoked by writing the instruction INT n.
Its ISR address is obtained by the pP from location n x 4 in the IVT.

HARDWARE INTERRUPTS

1) NMI (Non Maskable Interrupt)
This is a non-maskable, edge triggered, high priority interrupt.
On receiving an interrupt on NMI line, the pP executes INT 2.
pP obtains the ISR address from location 2 x 4 = 00008H from the IVT.
It reads 4 locations starting from this address to get the values for IP and CS, to execute the ISR.
© For doubts contact Bharat Sir on 98204 08217

2) INTR
This is a maskable, level triggered, low priority interrupt.

On receiving an interrupt on INTR line, the pP executes 2 INTA pulses.

1st INTA pulse --- the interrupting device calculates (prepares to send) the vector number.

2nd INTA pulse --- the interrupting device sends the vector number “N” to the pP.

Now pP multiplies N x 4 and goes to the corresponding location in the IVT to obtain the ISR address.
INTR is a maskable interrupt.

It is masked by making IF = 0 by software through CLI instruction.

It is unmasked by making IF = 1 by software through STI instruction.

Scanned with CamScanner

Response to any interrupt --- INT N

i) The pP will PUSH Flag register into the Stack.
SS:[SP-1], SS:[SP-2] &« Flag
SP &SP -2

i) Clear IF and TF in the Flag register and thus disables INTR interrupt.
IF&< 0, TF<« 0

iii) PUSH CS into the Stack.
SS:[SP-1], SS:[SP-2] « CS
SP &« SP-2

iv) PUSH IP into the Stack.
SS:[SP-1], SS:[SP-2] « IP
SP&SP-2

V) Load new IP from the IVT
IP < [Nx4], [Nx4 + 1]

vi) Load new CS from the IVT
IPE€[Nx4+2],[Nx4+ 3]

Since CS and IP get new values, control shifts to the address of the ISR and the ISR thus

begins. At the end of the ISR the uP encounters the IRET instruction and returns to the main
program in the following steps.

Response to IRET instruction

i) The pP will restore IP from the stack
IP € SS:[SP], SS:[SP+1]
SP& SP+ 2

i) The pP will restore CS from the stack
CS < SS:[SP], SS:[SP+1]
SP & SP + 2

iii) The pP will restore FLAG register from the stack
Flag € SS:[SP], SS:[SP+1]
SP&< SP+ 2

Scanned with CamScanner

Interrupt Priorities

Int t Priority
nerru .
P (Simultaneous occurrence) | (To interrupt another ISR)
Divide Error, INT n, INTO 1 (Highest)
Can interrupt any ISR
NMI 2
INTR - Cannot interrupt an ISR
(IF, TF < 0)
Single Stepping 4(Lowest)

Priority in 8086 interrupts is of two types:

1. Simultaneous Occurrence:

When more than one interrupts occur simultaneously

stepping, get the highest priority.

This is followed by NMI. Next is INTR. Finally,

interrupt.

Eg: Assume the pP is executin

INTR occurs.

Here INT 0 (Division error) will be serviced first i.e. its ISR will

then, all s/w interrupts except single
the lowest priority is of the single stepping

g a DIV instruction that causes a division error and simultaneously

be executed, as it has higher

priority, and then INTR will be serviced. srease refer Bhaat s Lectre Notes for this

2. Ability to interrupt another ISR:

Since software interrupts (INT N) are non-maskable,

they can interrupt any ISR.

NMI is also non-maskable hence it can also interrupt any ISR.

But INTR and Single stepping cannot interru

enters an ISR by IF € 0 and TF € 0.

Eg: Assume the pP executes DIV instruction
INT 0 interrupt and now pP enters the IS

INTR occur.

Here puP will branch out from th
After completing the ISR of NMI

e ISR of INT 0 and service NMI (as NMI is non-
HP will return to the ISR for INT 0.

INTR is still pending but the HP will not service INTR during the ISR of INT 0
HP will first finish the INT 0 ISR and only then
Thus INTR and Single stepping cannot interrupt a

pt another ISR as both are disabled before uP
that causes a division error. So pP gets the

R for INT 0. During the execution of this ISR, NMI and

service INTR.
n existing ISR,

Scanned with CamScanner

maskable).

(as IF € 0).

Interrupt priority Flowchart {Optional - Only for reference}

L]
COMPLETE CURRENT
INSTRUCTION

YES

INTERNAL

NTERRUPT2

ACKNOWLEDGE |,

INTERRUPT

READ TYPE
NUMBER

EXECUTE NEXT
INSTRUCTION

I

Flow chart of the interrupt
processing sequence of the 8088
and 8086 microprocessor

COMPLET CURRENT
INSTRUCTION

]

LET TEMP = TF

|
|

=

CLEARIF&TF

[]

PUSHCS & IP

11

CALL INTERRUPT
SERVICE ROUTINE

¥

EXECUTE USER
INTERRUPT ROUTINE

¥

POPIP & CS

¥

POP FLAGS

[

RESUME INTERRUPT
PROCEDURE

]

Scanned with CamScanner

8086 CONFIGURATIONS

Some common devices used in 8086 circuits for Minimum Mode or Maximum Mode are:

8282 - 8-bit (Octal) Latch

1)
2)

3)
4)

5)
6)
7)

8282 is an 8-bit latch.

In 8086, the address bus is multiplexed with the data bus and status bits.
8282 is used to latch the address from this bus.

The ALE signal is connected to STB of 8282.

When STB (ALE) is high, the input is latched and transferred to the output.
Hence address is latched.

When STB (ALE) is low, the input is discarded.
Hence, data is not latched. The previously latched address remains at the output.

As totally 21 bits are to be latched (A:9-Ag and BHE), 3 latches are required,
each latch being 8-bit.

8286 - 8-bit Data Trans-receiver

8286 is an 8-bit Trans-receiver.
It acts as a bi-directional buffer, and increases the driving capacity of the data bus.
It is enabled when OE is low.

T controls the direction of data.
If T = 1: data is transmitted.
If T = 0: data is received.

As the data bus is 16-bits, 2 trans-receivers are required.
Its main function is to prevent address and allow data to be transferred on the data bus.

In the 1% T-State when the bus contains address, OE is high hence the transreceiver is disabled.

Thereafter when the bus contains data OE is low and the transreceiver is enabled. Thus it only
allows data to pass.

Scanned with CamScanner

8284 - Clock Generator

——————
o N, RDY2 <
Q) 3
Sy I — i
ec -Tr— 4 Nz
S2S84a4 A
1 Ok =
‘_P
5 .EE—P_ = L /7
— 1O0xc F r—— FESET
j: READY
T = J
Fower-On ~
Resot Circuil
(Optional in
this diagram) R EA]:) ~
L RrESE T

oW

S0s8S6

1) 8284 is a Clock Generator IC.
e C LOCK (CLK) signal, a train of pulses at a constant freq,

3) It synchronizes the READY (RD Y) signal which indicates that an interface is ready for data.

4) It also synchronizes the RESET (RST) signal which is used to initialize the system.
5) There are 2 ways of providing the frequency input to 8284.

1) Through EFI (External Frequency Input)
A "Pulse Generator" circuit can be connected to the EFI pin, to provide an external freq.

2) Through X1, X2 (Oscillator Clock Inputs)
An Oscillator can be connected across the X1, X2 lines to provide constant clock signal.

6) In both the cases the Output Clock frequency = 1/3rd of the Input Clock frequency to produce a
33% duty cycle required by the Microprocessor. [For doubts contact Bharat Sir on 98204 08217

2) It provides th to the entire circuit.

7) Clock Selection is done by the F/f pin.
F/ C =1 9 Input Clock given through EFI pin.
F/ C =0 Input Clock given through Oscillator inputs X1, X2 pins.

Scanned with CamScanner

8086 MINIMUM MODE CONFIGURATION

"h

CLK
RES 8284 RESET
Clock
RDY
Generator READY N
Sys Ready
(Wait State
Generator)
Reset
Circuit

NM| e—p!
INTR s——

INTA +—nu|

HOLD ey

HLDA e———

Vet m—
{Logic 1)

ALE
ADy—AD;s,
Ays/S;3=Aa/Ss,

BHE/S,

DT/R
DEN

G 00 O 00

M/I0
RD

MN/ MX WR

B % BHE
: “
8(23? / AlB-AD
dd b
8 Bit Latch | 20 (Address bus)
OE
e
SS'S?
8286
(2)
8 Bit data Dis =Dy
(Data bus)
—p|T Trans- 16
Receiver
+|0F
Vee
|
G,
TlP -+ |OR
—s 74138
Y,p— iow
-0 38
Decoder Y5> MEMR
-1 A _
Yslo—— MEMW
Gaa Gy (Control Bus)

.|,.

Scanned with CamScanner

1)

2)

3)
4)

5)

6)

7)
8)

9)

8086 works in Minimum Mode, when MN/ MX = 1.

In Minimum Mode, 8086 is the ONLY processor in the system.
The Minimum Mode circuit of 8086 is as shown above.

Clock is provided by the 8284 Clock Generator.

Address from the address bus is latched into 8282 8-bit latch.
Three such latches are needed, as address bus is 20-bit.
The ALE of 8086 is connected to STB of the latch.

The ALE fﬂr this Iatch iS given bv 8086 itself- #Please refer Bharat Sir's Lecture Notes for this ..

The data bus is driven through 8286 8-bit transreceiver.
Two such transreceivers are needed, as the data bus is 16-bit.

The transreceivers are enabled through the DEN signal, while the direction of data is controlled by

the DT/H signal. DEN is connected to OE and DT/E is connected to T. Both DEN and

DT/ R are given by 8086 itself.

DEN DT/ R Action

Transreceiver is disabled
Receive data
Transmit data

[(=] 4

E
1
0
0

Control signals for all operations are generated by decoding M/ 10 , RD and WR signals.

For doubts contact Bharat Sir on 98204 08217

M/ 10 RD WR Action
1 0 1 Memory Read
1 1 0 Memory Write
0 0 1 1/0 Read
0 1 0 1/0 Write

M/ 10, RD , WR are decoded by a 3:8 decoder like IC 74138.

Bus Request (DMA) is done using the HOLD and HLDA signals.

INTA is given by 8086, in response to an interrupt on INTR line.

10)The Circuit is simpler than Maximum Mode but does not support multiprocessing.

Scanned with CamScanner

Timing Diagrams:

Minimum Mode Read Cycle
{M/IO = 1 then Memory read; M/10 = 0 then 1I/O Read}

T1 Tz T; T4
CLK __/ __/ \f
A],s/Sg—‘ALQ/SG; . _ A - T3 - 5 arssss
m/57 ¥ '< A — A B'HQ(5)
ADjs— ADo > Ap— Aj 3< Do + D: >
ALE —_—t \
Mfla ____,’ /1 1 M d 10 1/O Reg
pT/R |\
RD \ -
WR
DEN \ yauu
Minimum Mode Write Cycle
{M/IO = 1 then Memory Write; M/IO = 0 then 1/O Write}
L T, LE Ta
CLK \ / \ /
A16/S3—Aia/Se, _ " BHE <
AD;5— ADg >.. (An— A X Do—D)
ALE S \
M/lO ___/,_ 0 1M N 1/
DT/R
=5
WR \ /
BEN \ 71

Scanned with CamScanner

8086 MAXIMUM MODE CONFIGURATION

ldgxﬂ
Xy Xz CLK ALE m
RES | 9984 |RESET AD,—AD;s, 8282 b 4. - A
. Clock Ass/S3—A1s/Ss, o) 50 (Address bus)
: Generator READY BHE/S; 8 Bit Latch
STB OF
__'L__
Sys Ready
(Wait State
Generator)
8286
Reset (2)

NM| m—

Circuit |nterrupt 8 Bit data

RequeStS INTR — Trans-

Receiver

* Dis=Dq
(Data bus)

Bus Request [RQO/ GTo «
Logi(RQl/GTl JPEEEE——

E.

8
0
8 r OF
6

[oT/R DEN
ALE
TEST ey
Only For ai 3 g ki
8087 COP Q G— — —— /
l QS]. — sll slrsD ﬁ 8288
Bus
S— Controller
_—* MN/MX
ILo;ic 0)

2
E)
)
o

=
=
—
(g

al
.
]

TTTT]

oWC
p—> AIOWC

D— INTA

s

(Control Bus)

Scanned with CamScanner

1)

2)

3)

4)

5)

6)

7)

8086 works in Maximum Mode, when MN/ MX

= 0.

In Maximum Mode, we can connect more processors to 8086 (8087/8089).
The Maximum Mode circuit of 8086 is as shown above.

Clock is provided by the 8284 Clock Generator.

The most significant part of the Maximum Mode circuit is the 8288 Bus Controller.

Instead of 8086, the Bus Controller provides the various control signals as explained below.

Address form the address bus is latched into 8282 8-bit latch.
Three such latches are needed, as address bus is 20-bit.

This ALE is connected to STB of the latch.
The ALE for this latch is given by 8288 Bus Controller.

The data bus is driven through 8286 8-bit transreceiver.
Two such transreceivers are needed, as the data bus is 16-bit.

The transreceivers are enabled through the DEN signal, while the direction of data is controlled by the

DT/E signal.

DEN is connected to OE and DT/F is connected to T.

Both DEN and DT/ R are given by 8288 Bus Controller.

DEN (of 8288)

DT/ Action
0 X Transreceiver is disabled
1 0 Receive data
1 1 Transmit data

Control signals for all operations are generated by decoding S_;, S_l and S_u signals. @ ror

doubts contact Bharat Sir on 98204 08217

| __ | __ |Processor State 8288 Active Output
S, S, So | (What the pP (What Control signal should
wants to do) 8288 generate)
0 0 0 Int. Acknowledge INTA
0 0 1 Read 1/0 Port IORC
0 1 0 Write 1/0 Port IOWC and AIOWC
0 1 1 Halt None
1 0 0 Instruction Fetch MRDC
1 0 1 Memory Read MRDC
1 1 0 Memory Write MWTC and AMWTC
1 1 1 Inactive None

Scanned with CamScanner

8) S,, S: and S, are decoded using 8288 bus controller.

9) Bus request is done using RQ / GT lines interfaced with 8086.
RQQ/GTQ has hlgher priority than RQl/GT] © For doubts contact Bharat Sir on 98204 08217

10) INTA is given by 8288 Bus Controller, in response to an int. on INTR line of 8086.

11)Max mode circuit is more complex than Min mode but supports multiprocessing hence gives
better performance.

12)In max mode, the advanced write signals get activated one T-State in advance as compared to

no_rr_nal write signals. This gives slower devices more time to get ready to accept the data (as pP is
writing), and hence reduces the number of “wait states”.

Scanned with CamScanner

TIMING DIAGRAMS

CLK

§ZI glr g[}

A6/S3—A1a/Ss,
BHE/S;

AD;s— ADg >

ALE

DT/R

MRDC
OrlORC

DEN
(By 8288)

CLK

_5.2: glvgﬂ
Aje/S3—Ais/Ss,
BHE/S;

ADis— ADg

ALE

DT/R

Maximum Mode Read Cycle

T3 Ta

v
w
N

\
/
/ AN
Maximum Mode Write Cycle
Ts Ta

VY

AMWTC
Or AlIOWC

MWTC
OrIOWC

DEN
(By 8288)

Scanned with CamScanner

Differentiate between

MinN MODE

MaAax MODE

It is a uniprocessor mode.

It is a multiprocessor mode.
Along with 8086, there can be other

1 8‘086. is the only processor in the processors like 8087 and 8089 in the
circuit. P
circuit.
2 | Here MN/ MX is connected to Vcc. Here MN/ MX is connected to Ground.
. As there are multiple processors, ALE for
3 .ALE for the latch is given by 8086 the latch is given by 8288 bus
itself.
controller.
DEN and DT/? for the As there are multiple processors, DEN
4 | transreceivers are given by 8086 and DT/ R for the transreceivers is
itself. given by 8288 bus controller.
Direct control signals like M B ’
g / Instead of control signals, all processors
3 RD and WR are produced by produce status signals Sz, S; and Sp
8086 itself.
Control signals M/ 10 , RD and Status signals S,, S; and S, require
6 WR are decocded by a 3:8 special decoding are decoded by 8288
decoder IC 74138. bus controller.
7 INTA for interrupt acknowledgement | INTA for interrupt acknowledgement is
is produced by 8086. produced by 8288 Bus Controller.
g Bus request are grant is handled Bus request are grant is handled using
using HOLD and HLDA signals. RQ / GT signals.
Since 74138 does not independently Since 8288 independently generates
9 | generate any signals, it does not control signals, it needs a CLK from
need a CLK. 8284 clock generator.
10 The circuit is simpler but does not The circuit is more complex but

support multiprocessing.

supports multiprocessing.

Scanned with CamScanner

Differentiate between

8085

8086

8-bit processor with:
8-bit ALU and
8-bit data bus.

16-bit processor with:
16-bit ALU and
16-bit data bus.

2 | Memory banking not needed. Memory is divided into two banks.

3 | 16-bit address bus. 20-bit address bus.

4 | Accesses 64 KB Memory. Accesses 1 MB Memory.

5 | Segmentation not performed. Segmentation is performed.

6 | Has 5 status flags. Has 6 status flags and 3 control flags.
7 | Pipelining is not performed. 2 stage Pipelining is performed.

8 | Has 5 hardware interrupts. Has 2 hardware interrupts.

S | Does not support multiprocessing. | Supports multiprocessing in Max Mode.
10 ALU cannot perform powerful ALU can perform powerful arithmetic

arithmetic like MUL and DIV.

like MUL and DI1V.

Scanned with CamScanner

Differentiate between

8086

16-bit processor with:
16-bit ALU and
8-bit data bus.

16-bit processor with:
16-bit ALU and
16-bit data bus.

Memory banking not needed.
Hence circuit is simpler.

Memory is divided into two banks.
Hence circuit is more complex.

Since data bus is 8-bits, it can
transfer 1 byte in 1 cycle.
Hence is slower.

Since data bus is 16-bits, it can transfer
2 bytes in 1 cycle.
Hence is faster.

BHE is not needed.

Instead, has a signal called SSO used
for Single Stepping.

BHE is needed to enable the higher
bank.

Prefetch queue is of 4 bytes.

Prefetch queue is of 6 bytes.

Uses I0/ M compatible with 8085,

Uses M/E to differentiate between
memory and 1/0 operations.

Scanned with CamScanner

