
1

UNIT II
Style Sheets: CSS

Introduction to Cascading Style Sheets

Cascading Style Sheets (CSS) is a slightly misleading term, since a website might have only
one CSS file (style sheet), or the CSS might be embedded within an HTML file.

It is better to think of CSS as a technology (in the singular). CSS is comprised of statements
that control the styling of HTML documents. Simply put, an HTML document should convey
content.

A CSS document should control the styling of that content. <div align="center"></div>
 <table height="200">... <td
width="30"></td> All these examples can easily be replaced with CSS. Don't worry if you don't
understand these declarations yet. div {text-align: center;} img {border: 0 none;}
table {height: 200px;} td {width: 30px;} An HTML file points to one or more external
style sheets (or in some cases a list of declarations embedded within the head of the HTML file)
which then controls the style of the HTML document. These style declarations are called CSS rules.

Features :-

The latest version of Cascade Style Sheets, CSS 3, was developed to make Web design easier but
it became a hot topic for a while because not all browsers supported it.

However, trends change quickly in technology and all browser makers currently are
implementing complete CSS 3 support.

Making that process easier for the browser manufacturers is CSS 3's modularized specification,
which allows them to provide support for modules incrementally without having to perform major
refactoring of the browsers' codebases.

The modularization concept not only makes the process of approving individual CSS 3 modules
easier and faster, but it also makes documenting the spec easier. Eventually, CSS 3 -- along with HTML5
-- are going to be the future of the web.

You should begin making your Web pages compatible with these latest specifications. In this
article, I explore 10 of the exciting new features in CSS 3, which is going to change the way developers
who used CSS2 build websites.Some of the features are:
o CSS Text Shadow
o CSS Selectors
o CSS Rounded Corners
o CSS Border Image

2

Core Syntax
At-Rules

As we learned when we studied CSS statements, there are two types of statements. The most
common is the rule-sets statement, and the other is the at-rules statement. As opposed to rule sets, at-
rules statements consist of three things: the at-keyword, @, an identifier, and a declaration. This
declaration is defined as all content contained within a set of curly braces, or by all content up until
the next semicolon.
@import

Perhaps the most commonly used of the at-rules, @import, is used to import an external style
sheet into a document. It can be used to replace the LINK element, and serves the same function,
except that imported style sheets have a lower weight (due to having less proximity) than linked style
sheets. <style type="text/css" media="screen"> @import url(imported.css);
</style> @import url(addonstyles.css); @import "addonstyles.css"; Relative and
absolute URLs are allowed, but only one is allowed per instance of @import. One or more comma-
separated target media may be used here.
@charset

@charset is used to specify the character encoding of a document, and must appear no more
than once. It must be the very first declaration in the external style sheet, and cannot appear in
embedded style sheets. @charset is used by XML documents to define a character set. @charset
"utf-8";

@namespace
The @namespace rule allows the declaration of a namespace prefix to be used by selectors in

a style sheet. If the optional namespace prefix is omitted, then the URL provided becomes the default
namespace. Any @namespace rules in a style sheet must come after all @import and @charset at-
rules, and come before all CSS rule-sets. @namespace foo url("http://www.example.com/");
@namespace can be used together with the new CSS3 selectors (see below). It defines which XML
namespace to use in the CSS. If the XML document doesn't have matching XML namespace
information, the CSS is ignored.
@font-face

CSS1 Selectors

3

Selectors refer to elements in an HTML document tree. Using CSS, they are pattern-matched
in order to apply styles to those elements. A selector consists of one or more elements, classes, or
IDs, and may also contain pseudo-elements and/or pseudo-classes.

Type Selector

The type selector is the simplest selector of all, and matches all occurrences of an element. In
this example, all <p> tags throughout the document will have the following style applied, unless
overridden. p {color: #666;}

Universal Selector

The universal selector, used alone, matches all elements in the document tree, and thus will
apply styles to all elements. It is in effect a wildcard. * {margin: 0; padding: 0;} In this
example, all tags are reset to have no padding or margin. This, by the way, is a practice to gain
control over all the default padding and margin inherent in the way User Agents (UAs) display
HTML.
Class Selector

The class selector matches a classname. .largeFont {font-size: 1.5em;}
h3.cartHeader {text-align: center;} The "largeFont" class will apply to all elements into
which it is called. The "cartHeader" class will only function as styled if called into an H3 element.
This is useful if you have another "cartHeader" declaration that you wish to override in the context of
an H3 element, or if you wish to enforce the placement of this class. Powered by

ID Selector

The ID selector matches an ID. IDs are identifiers unique to a page. They bear a resemblance
to classes, but are used a bit differently. IDs will be treated more fully below. The first two ID
examples below refer to sections of a web page, while the last refers to a specific occurrence of an
item, say, an image in a DHTML menu. IDs have a higher specificity than classes. #header
{height: 100px;} #footer {color: #F00;} #xyz123 {font-size: 9px;}

Descendant Selector

A selector can itself be a chain of one or more selectors, and is thus sometimes called a
compound selector. The descendant selector is the only compound selector in CSS1, and consists of
two or more selectors and one or more white space combinators. In the example below, the white
space between the H1 and EM elements is the descendant combinator.

In other words, white space conveys a hierarchy. (If a comma were to have intervened
instead, it would mean that we were styling H1 and EM elements alike.) Selectors using combinators
are used for more precise drill-down to specific points within the document tree. In this example
 tags will have the color red applied to them if they are within an <h1> tag. h1 em {color:
#F00;} Note that EM elements do not have to be immediately inside an H1 heading, that is, they do
not have to be children, but merely descendants of their ancestor. The previous style would apply to

4

an EM element in either of the following statements. <h1>This is a main
heading</h1> <h1>This is another main heading</h1>

STYLE SHEETS AND HTML STYLE RULE

To apply a style, CSS uses the HTML document tree to match an element, attribute, or value
in an HTML file. For an HTML page to properly use CSS, it should be well-formed and valid, and
possess a valid doctype.

If these conditions are not met the CSS match may not yield the desired results.There are two
types of CSS statements: rule-sets and at-rules.

A rule set, also known simply as a rule, is the more common statement, and consists of a
selector and a declaration block, sometimes simply called a block. The selector can be an element,
class, or ID, and may include combinators, pseudo-elements, or pseudo-classes. Statement Type 1:
Rules Sets (Rules) statement + statement block X {declaration; declaration;} X {property; value;
property: value;} div > p {font-size: 1em; color #333;} Statement Type 2: At-Rules at-keyword +
identifier + declaration @import "subs.css";

Properties

I have decided not to include a description of all CSS1 and CSS2.1 Properties (such as font-
size, text-transform, border, margin, and many others) because they are numerous and can be
examined in the Property References section of this site. Moreover, they are used throughout this
tutorial and can be easily deduced. So we move directly to CSS1 selectors.

STYLE RULE CASCADING AND INHERITANCE:-

CSS are probably wondering what exactly cascades about cascading style sheets. In this
section we look at the idea of cascading, and a related idea, that of inheritance.

Both are important underlying concepts that you will need to grasp, and understand the
difference between, in order to work properly with style sheets.
Rule Cascade

A single style sheet associated with one or more web pages is valuable, but in quite a limited
way. For small sites, the single style sheet is sufficient, but for larger sites, especially sites managed
by more than one person (perhaps several teams who may never communicate) single style sheets
don't provide the ability to share common styles, and extend these styles where necessary. This can
be a significant limitation.

Cascading style sheets are unlike the style sheets you might have worked with using word
processors, because they can be linked together to create a hierarchy of related style sheets.
Managing style at large sites using @import Imagine how the web site for a large organization, say a
corporation, might be structured. As sites grow in complexity, individual divisions, departments, and
workgroups become more responsible for their own section of a site. We can already see a potential
problem - how do we ensure a consistent look and feel across the whole site?A dedicated web
development team can ensure that a style guide is adhered to.
Specificity

5

Get browser support information for specificity in the downloadable version of this guide or
our browser support tables.At this point it might be timely to have a quick discussion of specificity.
Both inside a single style sheet, and in a cascade of style sheets, it should be clear that more than one
rule can apply to the same element. What happens when two properties in separate rules which both
apply to an element contradict one another? Obviously they can't both apply (the text of an element
can't be both red and blue, for example). CSS provides a mechanism for resolving these conflicts,
called specificity. Some selectors are more specific than others. For example, the class and ID
selectors are more specific than simple HTML element selectors. When two rules select the same
element and the properties contradict one another, the rule with the more specific selector takes
precedence. Specificity for selectors is a little involved. Without going into the full detail, most
situations can be resolved with the following rules.

1. ID selectors are more specific than other selectors
2. Class selectors are more specific than HTML element selectors, and other selectors such as
contextual, pseudo class and pseudo element selectors.
3. Contextual selectors, and other selectors involving more than one HTML element selector

are more specific than a single element selector (and for two multiple element selectors, the one with
more elements is more specific than the one with fewer.)

Style Inheritance

Any HTML page comprises a number of (perhaps a large number of) elements - headings,
paragraphs, lists, and so on. Often, developers use the term "tag" to refer to an element,
makingreference for example to "the p tag". But the tag is simply the <p></p> part of the element.
The whole construction of <p>This is the content of the paragraph</p> is in fact the <p>
element (as we refer to it in this guide).

What many web developers don't realize (largely because it wasn't particularly important
until style sheets came along) is that every element is contained by another element, and may itself
contain other elements. The technical term for this is the containment hierarchy of a web page. At the
top of the containment hierarchy is the <html> element of the page.

Every other element on a web page is contained within the <html> element, or one of the
elements contained within it, and so on. Similarly, many elements will be contained in paragraphs,
while paragraphs are contained in the <body>. Graphically, we can understand it like this.

6

Text t properties :-

CSS Font Families

CSS font properties define the font family, boldness, size, and the style of a text.
Difference Between Serif and Sans-serif Fonts

On computer screens, sans-serif fonts are considered easier to read than serif fonts. In CSS,
there are two types of font family names:
generic family - a group of font families with a similar look (like "Serif" or "Monospace")
font family - a specific font family (like "Times New Roman" or "Arial")
Generic family Font family Description
Serif Times New Roman

Georgia
Serif fonts have small lines at
the ends on some characters

Sans-serif Arial Verdana "Sans" means without - these
fonts do not have the lines at
the ends of characters

Monospace Courier New Lucida
Console

All monospace characters have
the same width

The CSS Box Model

BLOCK DIAGRAM

All HTML elements can be considered as boxes. In CSS, the term "box model" is used when
talking about design and layout. The CSS box model is essentially a box that wraps around HTML
elements, and it consists of: margins, borders, padding, and the actual content. The box model allows
us to place a border around elements and space elements in relation to other elements. The image
below illustrates the box model:

NORMAL FLOW BOX LAYOUT
Understanding the box model is critical to developing web pages that don't rely on tables for

layout. In the early days of writing HTML, before the advent of CSS, using tables was the only way
to have discreet content in separate boxes on a page. But tables were originally conceived to display
tabular information.

With the advent of CSS floating and positioning, there is no longer a need to use tables for
layout, though many years later many, if not most, sites are still using tables in this manner.The box
model, as defined by the W3C "describes the rectangular boxes that are generated for elements in the
document tree and laid out according to the visual formatting model".

7

Don't be confused by the term "boxes". They need not appear as square boxes on the page.
The term simply refers to discreet containers for content. In fact, every element in a document is
considered to be a rectangular box.
Padding, Borders, Margins
Padding immediately surrounds the content, between content and borders. A margin is the space
outside of the borders. If there are no borders both paddng and margin behave in roughly the same
way, except that you can have negative margins, while you cannot have negative padding. Also
padding does not collapse like margins. See below for the section on collapsing margins. The picture
on the right illustrates padding, borders, and margins. The content area does not really have a border.
The line around the content merely indicates the limits of the actual content.

Traditional vs. W3C Box Models

Beyond the Normal Flow

Positioning
The CSS positioning properties allow you to position an element. It can also place an element

behind another, and specify what should happen when an element's content is too big.Elements can
be positioned using the top, bottom, left, and right properties. However, these properties will not
work unless the position property is set first. They also work differently depending on the positioning
method.There are four different positioning methods.
Static Positioning

HTML elements are positioned static by default. A static positioned element is always
positioned according to the normal flow of the page.Static positioned elements are not affected by the
top, bottom, left, and right properties.
Fixed Positioning

An element with fixed position is positioned relative to the browser window.It will not move
even if the window is scrolled:
Example

8

p.pos_fixed { position:fixed; top:30px; right:5px; } Note: Internet Explorer supports the fixed value
only if a !DOCTYPE is specified.Fixed positioned elements are removed from the normal flow. The
document and other elements behave like the fixed positioned element does not exist.Fixed
positioned elements can overlap other elements.

CLIENT SIDE PROGRAMMING:JAVA SCRIPT

Introduction

JavaScript is most commonly used as a client side scripting language. This means that
JavaScript code is written into an HTML page. When a user requests an HTML page with JavaScript
in it, the script is sent to the browser and it's up to the browser to do something with it.JavaScript can
be used in other contexts than a Web browser.

Netscape created server-side JavaScript as a CGI-language that can do roughly the same as
Perl or ASP.

There is no reason why JavaScript couldn’t be used to write real, complex programs.
However, this site exclusively deals with theuse of JavaScript in web browsers.I can also recommend
Jeremy Keith, DOM Scripting: Web Design with JavaScript and the Document Object Model, 1st
edition, Friends of Ed, 2005.

This, too, is a book that doesn't delve too deeply into technology, but gives non-programmers
such as graphic designers/CSS wizards an excellent overview of the most common uses of JavaScript
- as well as the most common problems.

History and Versions of The JavaScript language

 JavaScript is not a programming language in strict sense. Instead, it is a scripting language
because it uses the browser to do the dirty work. If you command an image to be replaced by
another one, JavaScript tells the browser to go do it. Because the browser actually does the work,
you only need to pull some strings by writing some relatively easy lines of code.

 That’s what makes JavaScript an easy language to start with. But don’t be fooled by some
beginner’s luck: JavaScript can be pretty difficult, too. First of all, despite its simple appearance
it is a full fledged programming language: it is possible to write quite complex programs in
JavaScript. This is rarely necessary when dealing with web pages, but it is possible. This means
that there are some complex programming structures that you’ll only understand after protracted
studies.

JavaScript versions

There have been several formal versions of JavaScript.
1.0: Netscape 2

9

1.1: Netscape 3 and Explorer 3 (the latter has bad JavaScript support, regardless of its version)

1.2: Early Version 4 browsers

1.3: Later Version 4 browsers and Version 5 browsers

1.4: Not used in browsers, only on Netscape servers

INTRODUCTION TO JAVA SCRIPT

What is JavaScript?

 JavaScript was designed to add interactivity to HTML pages
 JavaScript is a scripting language
 A scripting language is a lightweight programming language
 A JavaScript consists of lines of executable computer code
 A JavaScript is usually embedded directly into HTML pages
 JavaScript is an interpreted language (means that scripts execute without preliminary

compilation)
 Everyone can use JavaScript without purchasing a license

What can a JavaScript Do?

 JavaScript gives HTML designers a programming tool - HTML authors are normally not
programmers, but JavaScript is a scripting language with a very simple syntax! Almost anyone
can put small "snippets" of code into their HTML pages

 JavaScript can put dynamic text into an HTML page - A JavaScript statement like this:
document.write("<h1>" + name + "</h1>") can write a variable text into an HTML page

 JavaScript can react to events - A JavaScript can be set to execute when something happens,
like when a page has finished loading or when a user clicks on an HTML element

 JavaScript can read and write HTML elements - A JavaScript can read and change the content
of an HTML element

 JavaScript can be used to validate data - A JavaScript can be used to validate form data before
it is submitted to a server. This saves the server from extra processing

 JavaScript can be used to detect the visitor's browser - A JavaScript can be used to detect the
visitor's browser, and - depending on the browser - load another page specifically designed for
that browser

 JavaScript can be used to create cookies - A JavaScript can be used to store and retrieve
information on the visitor's computer

 BASIC SYNTAX
 How to Put a JavaScript Into an HTML Page

<html>
<body>

<script type="text/javascript">
document.write("Hello World!");

10

</script>
</body>
</html>

Hello World!
Example Explained
To insert a JavaScript into an HTML page, we use the <script> tag. Inside the <script> tag we use the
"type=" attribute to define the scripting language. So, the <script type="text/javascript"> and </script>
tells where the JavaScript starts and ends:

<html>

<body>

<script type="text/javascript">

...

</script>

</body>

</html>

JAVASCRIPT VARIABLES AND DATATYPES

As with algebra, JavaScript variables are used to hold values or expressions. A variable can have
a short name, like x, or a more describing name like length. A JavaScript variable can also hold a text
value like in carname="Volvo". Rules for JavaScript variable names:
Variable names are case sensitive (y and Y are two different variables)
Variable names must begin with a letter or the underscore character

Example

A variable's value can change during the execution of a script. You can refer to a variable by its
name to display or change its value.

Declaring (Creating) JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring" variables. You can
declare JavaScript variables with the var statement: var x; var carname; After the declaration shown
above, the variables has no values, but you can assign values to the variables while you declare them: var
x=5; var carname="Volvo";
Assigning Values to JavaScript Variables

You assign values to JavaScript variables with assignment statements: x=5; carname="Volvo";
The variable name is on the left side of the = sign, and the value you want to assign to the variable is on

11

the right. After the execution of the statements above, the variable x will hold the value 5, and carname
will hold the value Volvo.
Assigning Values to Undeclared JavaScript Variables

 If you assign values to variables that has not yet been declared, the variables will automatically

be declared.These statements: x=5; carname="Volvo"; have the same effect as: var x=5; var
carname="Volvo";

Redeclaring JavaScript Variables

If you redeclare a JavaScript variable, it will not lose its original value. var x=5; var x; After the
execution of the statements above, the variable x will still have the value of 5. The value of x is not reset
(or cleared) when you redeclare it.

DataTypes

 Numbers - are values that can be processed and calculated. You don't enclose them in
quotation marks. The numbers can be either positive or negative.

 Strings - are a series of letters and numbers enclosed in quotation marks. JavaScript uses
the string literally; it doesn't process it. You'll use strings for text you want displayed or
values you want passed along.

 Boolean (true/false) - lets you evaluate whether a condition meets or does not meet
specified criteria.

 Null - is an empty value. null is not the same as 0 -- 0 is a real, calculable number,
whereas null is the absence of any value.

Data Types TYPE EXAMPLE
Numbers Any number, such as 17, 21, or 54e7
Strings "Greetings!" or "Fun"
Boolean Either true or false
Null A special keyword for exactly that –

the null value (that is, nothing)
JAVASCRIPT STATEMENTS

 A JavaScript statement is a command to the browser. The purpose of the command is to tell the
browser what to do.

 This JavaScript statement tells the browser to write "Hello Dolly" to the web page:
document.write("Hello Dolly"); It is normal to add a semicolon at the end of each executable statement.
Most people think this is a good programming practice, and most often you will see this in JavaScript
examples on the web.

12

 The semicolon is optional (according to the JavaScript standard), and the browser is supposed to
interpret the end of the line as the end of the statement. Because of this you will often see examples
without the semicolon at the end. Note: Using semicolons makes it possible to write multiple statements
on one line.

JavaScript Code

 JavaScript code (or just JavaScript) is a sequence of JavaScript statements. Each statement is
executed by the browser in the sequence they are written.

 This example will write a header and two paragraphs to a web page:

<script type="text/javascript">

document.write("<h1>This is a header</h1>");

document.write("<p>This is a paragraph</p>");

document.write("<p>This is another paragraph</p>");

</script>

JAVASCRIPT OPERATORS

= is used to assign values. + is used to add values.

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together. y=5; z=2; x=y+z; The value of x, after the
execution of the statements above is 7.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

Operator Description Example Result
+ Addition x=y+2 x=7
- Subtraction x=y-2 x=3
* Multiplication x=y*2 x=10
/ Division x=y/2 x=2.5
% Modulus (division

remainder)
x=y%2 x=1

13

++ Increment x=++y x=6

JAVASCRIPT FUNCTIONS

A function will be executed by an event or by a call to the function.
JavaScript Functions

 To keep the browser from executing a script when the page loads, you can put your script into a
function.A function contains code that will be executed by an event or by a call to the function.You may
call a function from anywhere within a page (or even from other pages if the function is embedded in an
external .js file).Functions can be defined both in the <head> and in the <body> section of a document.
However, to assure that a function is read/loaded by the browser before it is called, it could be wise to put
functions in the <head> section.

OBJECTS

 JavaScript Objects represent self contained entities consisting of variables (called properties in
object terminology) and functions (called methods) that can be used to perform tasks and store complex
data. JavaScript objects fall into three categories:

 Built-in Objects, Custom Objects and Document Object Model (DOM) Objects. Built-in objects
are objects that are provided with JavaScript to make your life as a JavaScript developer easier. In many
of the examples given in this book we have used the document.write() mechanism to write text to the
current web page.

 Whether you knew it or not, you have been using the write() method of the JavaScript built-in
document object when you have run these scripts. Document Object Model (DOM) Objects provide the
foundation for creating dynamic web pages. The DOM provides the ability for a JavaScript script to
access, manipulate, and extend the content of a web page dynamically (i.e. without having to reload the
page).

 The DOM essentially presents the web page as a tree hierarchy of objects representing the contents
and elements of the web page. These objects, in turn, contain properties and methods that allow you to
access and change parts of the web page. Custom objects are objects that you, as a JavaScript developer,
create and use.

BUILT –IN OBJECTS

Java Script String

The String object is used to manipulate a stored piece of text.

14

Complete String Object Reference

For a complete reference of all the properties and methods that can be used with the String object,
go to our complete String object reference. The reference contains a brief description and examples of use
for each property and method!
String object

The String object is used to manipulate a stored piece of text. Examples of use: The following
example uses the length property of the String object to find the length of a string: var txt="Hello
world!"; document.write(txt.length);

The code above will result in the following output: 12 The following example uses the
toUpperCase() method of the String object to convert a string to uppercase letters: var txt="Hello
world!"; document.write(txt.toUpperCase()); The code above will result in the following output:
HELLO WORLD!

JavaScript Date Object
 The Date object is used to work with dates and times.

Complete Date Object Reference

For a complete reference of all the properties and methods that can be used with the Date object,
go to our complete Date object reference.The reference contains a brief description and examples of use
for each property and method!

Create a Date Object

 The Date object is used to work with dates and times. Date objects are created with the Date()
constructor. There are four ways of instantiating a date: new Date() // current date and time new
Date(milliseconds) //milliseconds since 1970/01/01 new Date(dateString) new Date(year, month, day,
hours, minutes, seconds, milliseconds) Most parameters above are optional.

 Not specifying, causes 0 to be passed in.Once a Date object is created, a number of methods allow
you to operate on it. Most methods allow you to get and set the year, month, day, hour, minute, second,
and milliseconds of the object, using either local time or UTC (universal, or GMT) time.All dates are
calculated in milliseconds from 01 January, 1970 00:00:00 Universal Time (UTC) with a day containing
86,400,000 milliseconds.

Some examples of instantiating a date:

today = new Date()

d1 = new Date("October 13, 1975 11:13:00")

15

d2 = new Date(79,5,24)

d3 = new Date(79,5,24,11,33,0)

JavaScript Boolean Object

The Boolean object is used to convert a non-Boolean value to a Boolean value (true or false).
Complete Boolean Object Reference

 For a complete reference of all the properties and methods that can be used with the Boolean object,
go to our complete Boolean object reference.The reference contains a brief description and examples of
use for each property and method!

Create a Boolean Object

 The Boolean object represents two values: "true" or "false".

The following code creates a Boolean object called myBoolean: var myBoolean=new Boolean();

Note: If the Boolean object has no initial value or if it is 0, -0, null, "", false, undefined, or NaN, the
object is set to false. Otherwise it is true (even with the string "false")!

All the following lines of code create Boolean objects with an initial value of false:

var myBoolean=new Boolean();

var myBoolean=new Boolean(0);

var myBoolean=new Boolean(null);

var myBoolean=new Boolean("");

var myBoolean=new Boolean(false);

var myBoolean=new Boolean(NaN);

And all the following lines of code create Boolean objects with an initial value of true:

JAVASCRIPT DEBUGGERS
Firebug

Firebug is a powerful extension for Firefox that has many development and debugging tools
including JavaScript debugger and profiler.

Venkman JavaScript Debugger
Venkman JavaScript Debugger (for Mozilla based browsers such as Netscape 7.x,
Firefox/Phoenix/Firebird and Mozilla Suite 1.x)

Introduction to Venkman

16

Using Breakpoints in Venkman

Internet Explorer debugging
Microsoft Script Debugger (for Internet Explorer) The script debugger is from the Windows 98

and NT era. It has been succeeded by the Developer Toolbar

Internet Explorer Developer Toolbar

Microsofts Visual Web Developer Express is Microsofts free version of the Visual Studio IDE. It
comes with a JS debugger. For a quick summary of its capabilities see [1]

Internet Explorer 8 has a firebug-like web development tool by default (no add-on) which can be accessed
by pressing F12. The web development tool also provides the ability to switch between the IE8 and IE7
rendering engines.

JTF: Javascript Unit Testing Farm

JTF is a collaborative website that enables you to create test cases that will be tested by all
browsers. It's the best way to do TDD and to be sure that your code will work well on all browsers.

