| Name :                    | <u>A</u>                             |
|---------------------------|--------------------------------------|
| Roll No. :                | A Annual Of Sound for Part Excelored |
| Invigilator's Signature : |                                      |

## CS/MCA/SEM-2/MCA-204/2013

# 2013

## **DATABASE MANAGEMENT SYSTEM – I**

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

#### **GROUP – A**

## (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$ 

- i) If two attributes both can be treated as primary key, the either of the keys is called
  - a) foreign key b) alternate key
  - c) candidate key d) super key.
- ii) COUNT (\*) returns
  - a) Number of rows regardless of NULLS
  - b) Number of rows regarding of NULLS
  - c) Number of all the rows
  - d) None of these.

2154



iii) Which statement is correct : Union operation

- a) combines the columns from the results obtained from the participating queries
- b) combines the rows from the results obtained from the participating queries.
- c) both (a) and (b)
- d) none of these
- iv) Functional dependencies will be required
  - a) in schema making
  - b) on Transaction
  - c) on Cartesian product calculation
  - d) in Normalization.
- v) Given a relation  $R : \{A,B,C\}$  & the set of FDs :

 $A \rightarrow B$ 

$$B \rightarrow C$$

Decomposed into

R2 : {B,C}

The decomposition is

- a) lossless join decomposition
- b) dependency preserving
- c) both a & b
- d) none of these.

2154

|       |                                                                                                                     | CS/I                                                       | MCA/           | SEM-2/MCA-204/2013                             |
|-------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------|------------------------------------------------|
| vi)   | For a given relation R : {J,K,L} having a set of FDs ${JK \rightarrow L, L \rightarrow K}$ , the candidate keys are |                                                            |                |                                                |
|       | a)                                                                                                                  | J & K                                                      | b)             | JK                                             |
|       | c)                                                                                                                  | Only J                                                     | d)             | JK & JL.                                       |
| vii)  | The<br>that<br>oper                                                                                                 | operation on a certain<br>Y contains only sel<br>ration is | relat<br>ected | ion X, produces Y such<br>attributes of X. The |
|       | a)                                                                                                                  | Projection                                                 | b)             | Selection                                      |
|       | c)                                                                                                                  | Union                                                      | d)             | Difference.                                    |
| viii) | The<br>is                                                                                                           | number sub-schema o                                        | faso           | chema with $n$ attributes                      |
|       | a)                                                                                                                  | n                                                          | b)             | $2^{n} - 1$                                    |
|       | c)                                                                                                                  | $n^2 - 1$                                                  | d)             | log n.                                         |
| ix)   | Let a DBMS has <i>q</i> external views. Then the number of possible interfaces that may exists are                  |                                                            |                |                                                |
|       | a)                                                                                                                  | equal to q                                                 | b)             | less than $q$                                  |
|       | c)                                                                                                                  | greater than $q$                                           | d)             | none of these.                                 |
| x)    | If $R$ and $S$ are two relations, which of the following algebraic expressions is true ?                            |                                                            |                |                                                |
|       | a)                                                                                                                  | $R \cap S = (R \cup S) - ((R - S))$                        | $) \cup (S)$   | (-R))                                          |
|       | b)                                                                                                                  | $R \times S = (R \cup S) - ((R - S))$                      | ∪ <b>(</b> S   | – <i>R</i> ))                                  |
|       | c)                                                                                                                  | $R \cap S = (R \times S) - ((R - S))$                      | $\cup$ (S      | – <i>R</i> ))                                  |
|       | d)                                                                                                                  | None of these.                                             |                |                                                |
| xi)   | Arm                                                                                                                 | strong's inference rules                                   | are            |                                                |
|       | a)                                                                                                                  | Weak and sound                                             | b)             | Strong and sound                               |
|       |                                                                                                                     |                                                            |                |                                                |

c) Sound and Complete d) None of these.

3



- xii) Which of the following properties guarantees that spurious tuples does not occur with respect to the relational schema created after decomposition ?
  - a) Dependency preservation property
  - b) Non-additive join property
  - c) Accociatiove join property
  - d) None of these.

#### **GROUP – B**

#### (Short Answer Type Questions)

Answer any *three* of the following.  $3 \times 5 = 15$ 

- How does tuple relational calculus differ from domain relational calculus ? Discuss the meaning of the existential quantifier (∃) and the universal quantifier (∀).
- 3. "Every BCNF is also in 3NF and more restrictive constraints than 3NF" explain.
- 4. Find the minimum cover of  $F = \{A \rightarrow BC, AC \rightarrow D, D \rightarrow B, AB \rightarrow D\}$
- 5. Consider the relation *R* = {A,B,C,D,E,F,G,H,I,J} and the set of Functional Dependencies F :

$$\begin{array}{l} \{A,B\} \rightarrow C \\ A \rightarrow \{D,E\} \\ B \rightarrow F \\ F \rightarrow \{G,H\} \\ D \rightarrow \{I,J\} \end{array}$$

- a) Deduce the key for R
- b) Normalize R up to 3NF.

2154

Express the algebraic operation of Division in terms of  $\pi$ , × 6. and – operations, where  $\pi$  represents Projection, × represents Cartesian Product and - represents Set Difference.

#### **GROUP - C**

## (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

7. Define functional dependency. What do you mean by Partial functional dependency and Full functional dependency ? are Armstrong's inference rules ? What is What Normalization ? Explain with an example 1NF, 2NF and 3NF.

2 + 4 + 2 + 1 + 6

What do you mean by Lossless join decomposition ? Write 8. down the algorithm for testing lossless join property of relations. Test the lossless join property of the following relations.

 $R = \{A, B, C, D, E\}$  $R1 = \{AD\},\$  $R2 = \{AB\},\$  $R3 = \{BE\},\$  $R4 = \{CDE\}$  and  $R5 = \{AE\}$ Functional dependencies are :  $F = (A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A)$ 2 + 5 + 8

2154

#### CS/MCA/SEM-2/MCA-204/2013



9. Consider the following tables :

Deposit : {cust\_id, name, branch, balance}

Loan : {cust\_id, name, amount}

- a) Represent the following using relational algebra :
  - i) Names of customers having both loan & deposit accounts.
  - Names of customers having loan account, but no deposit account.
  - iii) Find the branch name where customers having loan account and deposit accounts. Do not use standard natural join operator.
- b) Using tuple calculus, find the names of customers having deposit account in 'xyz' branch having balance > 7500.
   (3 + 3 + 5) + 4
- 10. Outline an algorithm for insertion of a record in a B<sup>+</sup> tree.
  Construct a B<sup>+</sup> tree for the following set of key values under the assumption that the number of key values that fit in a node is 3 :

Key values : 3,10,12,14,29,38,45,55,60,68

Show the steps involved in the following insertions : Insert 11 & 30. 5 + 5 + 5

CS/MCA/SEM-2/MCA204/2013 11. Write short notes on any *two* of the following :  $2 \times 7\frac{1}{2}$ 

- a) Query and its optimization
- b) Network Data Model
- c) Enhanced ER Diagram
- d) Applications of Normalization

\_

e) Armstrong's Axioms.