

Code No. 3115

FACULTY OF ENGINEERING

B.E. 4/4 (E & EE) I-Semester (Supplementary) Examination, June/July, 2011 ELECTRICAL MACHINE DESIGN

Tim	ne: Three Hours] [Maximum Marks:	75		
	Answer ALL questions from Part A. Answer any FIVE questions from Part B.			
	PART—A (Marks : 25)			
1.	Define super conductivity and transient temperature.	3		
2.	Differentiate between grain oriented and non-oriented steel sheet.			
3.	Explain leakage flux from salient poles.			
4.	Define Curter's gap coefficient.			
5.	What is window space factor? What factors influence it?			
6.	Write the importance of cooling curve.			
7.	Prove that volume of active parts is proportional to the torque of a D.C. machine.			
8.	Why the power factor is poor when the machine is designed with high specific magneting loading?			
9.	What are the different approaches of computer aided design of electrical machine?			
10.	Draw the flow chart for a synthesis method of computer aided design.	3		
	PART—B (Marks: 50)			
11.	(a) Compare the conducting properties of copper and aluminium and state relative men	rits. 5		
	(b) Write details of different magnetic materials used in electrical machine design.	5		
12.	(a) Derive the expression for the specific slot permeance of a semi closed rectangular with single layer winding on it.	slot 5		
	(b) Calculate MMF required for air gap of a machine having core length = 0.32 m include 4 ducts of 10 mm each. Pole arc = 0.19 m, slot pitch = 65.4 mm, slot opening = 5 m air-gap length = 5 mm, flux per pole = 52 m wb. Given Carter's coefficient is 0.18 open/gap = 1 is 0.28 when open/gap = 2.	nm,		

HVS---860

(Contd.)

13.	(a)	Derive the expression for quantity of cooling medium.	
	(b)	The tank of 100 kVA natural coil cooled transforms has the length \times width \times height as $(0.65 \times 1.55 \times 1.85)$ m respectively. The full load loss = 13.1 kW; loss due to radiation = 6 W/m^2 -°C; loss due to convection = 6.5 W/m^2 -8°C. Improvement in convection due to tubes = 50%. Temperature rise = 40 °C; length of each tube = 1 m; diameter of tube = 50 mm. Find number of tubes for this transformer for cooling.	
14.	(a)	Derive the output equation and power developed by armature of D.C. machine as meter and generator.	
	(b)	Find the main dimensions and no. of poles of a 25 kW, 220 V, 1500 rpm short motor so that square pole face is obtained. The overuse gap flux density is 0.5 Wb/m^2 and ac = 22000 Ac/m. The ratio of pole arc to pole pitch = 0.7 . Efficiency = 90%.	
15.	(a)	Derive the output equation of ac machine.	
	(b)	Estimate the diameter, core length size and no. of conductor and no. of slots for stator of 10 MVA, 11 kV, 50 Hz, 2 pole star connected turbo alternator with 60° phase spread, $B_{av} = 20.55 \text{ Wb/m}^2$, ac = 36000 A/M . Current density = 5 A/mm^2 , peripheral speed = 160 m/s , winding is arranged to 5^{th} harmonic.	
16.	Explain about computer aided design of 3 \$\phi\$ induction motor with symbols and design procedure.		
17	•		
1/.	Write short notes on any TWO:		
	(a)	Specific magnetic and electric loading of dc machine	
	(b)	Different types of slot leakage fluxes 5	
	(c)	Output equation of 3 \phi transformers.	