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7.1 What is an loT Device i
“in Internet of Things (10T) can be any object that b, - |

As described carlier, a " Thimg! ' ; ) ) Qe |
identiher and which can cend/receive data (including user (,]atd) OVeT 4 Détwork fe,g.. &ma;
phone. smart TV, computer. refrigerator, car, etc. ). [oT devices are connected to the Integy,

and send information about themselves or about their surr(?undmgs (c.g. '“fﬂfmation e
twork (to other devices or servers/storage) or all,.

by the connected sensors) over a ne
wironment around them remotely. Some example

actuation upon the physical entities/et
IoT devices are listed below:
e A home automation device that allows remotely monitoring the status of applianc..

and controlling the appliances.
e An industrial machine which sends information abouts its operation and hey;

monitoring data to a server.

e A car which sends information about its location to a cloud-based service.

e A wireless-enabled wearable device that measures data about a person such as
number of steps walked and sends the data to a cloud-based service.

7.1.1 Basic building blocks of an loT Device

An loT device can consist of a number of modules based on functional attributes, such a

e Sensing: Sensors can be either on-board the IoT device or attached to the device. [o*
device can collect various types of information from the on-board or attached sensc:
such as temperature, humidity, light intensity, etc. The sensed information ca2 *
communicated either to other devices or cloud-based servers/storage.

e Actuation: loT devices can have various types of actuators attached that allow
actions upon the physical entities in the vicinity of the device. For example. 4 =
switch connected to an 10T device can turn an appliance on/off based on the comma™
sent 10 the device.

¢ Communication: Communication modules are responsible for sending collected
o other devices or cloud-based servers/storage and receiving data from other &
and commands from remote applications.

: ‘ P S, ) . : . gk

. Analyw & Processing: Analysis and processing modules are responsible 10 mak
sense of the collected data,

The representative 10T device used for : . ide

ingle-b 'pd P Ice used for the examples in this book is the widel e 0
SN Rt BN Sompdier called Raspberry pj (explained in later sections). The &
Raspberry Pi is intentional since these devices : : e 181Ve: f
axzailabis 6 : thet vices are widely accessible, inexpel oll
available from multiple vendors, Furthermore e o - “able of ih

rogramming and use both » eXtensive information is availa il
prog on the Internet and in other textbooks, The principles we 8
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Device: Raspberry P

72 xemplary
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K are just 96 applicable to other (including proprictary) 0T endpoints, in addition to
Befu:}, ¢ look at the specifics of Raspherry Pi, let us first look ‘al the building
single-board computer (SBC) based 10T device

this DOOR €7
RaspberTy Skl
plocks of 8 generic
| Figure 7.1 shows a generic block diagram of a single-board computer (SBC) based

foT device that includes CPU, GPU, RAM, storage and various types of interfaces and

pc:'ipht‘l’als.
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Figure 7.1: Block diagram of an IoT Device

2 Exemplary Device: Raspberry P

aspberry Pi [104] is a low-cost mini-computer with the physical size of a credit card.
aspberry Pi runs various flavors of Linux and can perform almost all tasks that a normal
lesktop computer can do. In addition to this, Raspberry Pi also allows interfacing sensors
" actuators through the general purpose I/O pins. Since Raspberry Pi runs Linux operating

ystem, it supports Python "out of the box".

: | -
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73 About the Board

Ereare 2.2 shows the Raspberry Prboard wath the various components/periphera, |
lE.._i.a . s \ y L "',i";l

o Processor & RAM : Raspberry Piis based onan ARM processor, The liges VETsity 4
Raspbeny P (Model B, Revision 2) comes with 700 MHz Low Power ARM| ]';(,];I‘!
srovessor and $12 MB SDRAM. A

e USB Ports : Raspberry Pi comes with two USB 2.0 ports, The USB POIs on Rasphy,,
Pi can provide a current upto 100mA. For connecting devices that draw currepy :
than 100mA. an external USB powered hub is required.

o Ethernet Ports : Raspberry Pi comes with a standard RJ45 Ethernet port, Yoy,
connect an Ethernet cable or a USB Wifi adapter to provide Internet connectivity,

o HDMI Qutput : The HDMI port on Raspberry Pi provides both video and aud,
output. You can connect the Raspberry Pi to a monitor using an HDMI cable. f4
monitors that have a DVI port but no HDMI port, you can use an HDMI to )y
adapter/cable.

« Composite Video Output : Raspberry Pi comes with a composite video output wits
an RCA jack that supports both PAL and NTSC video output. The RCA jack can b
used to connect old televisions that have an RCA input only.

e Audio Output : Raspberry Pi has a 3.5mm audio output jack. This audio jack is us!
for providing audio output to old televisions along with the RCA jack for video. T
audio quality from this jack is inferior to the HDMI output.

e GPIO Pins : Raspberry Pi comes with a number of general purpose input/ouput pies
Figure 7.3 shows the Raspberry Pi GPIO headers. There are four types of pins o
Raspberry Pi - true GPIO pins, 12C interface pins, SPI interface pins and serial Rx an
Tx pins.

e Display Serial Interface (DSI) : The DSI interface can be used to connect an LCD
panel to Raspberry Pi.

e Camera Serial Interface (CSI) : The CSI interface can be used to connect a cam<”
module to Raspberry Pi.

o Status LEDs : Raspberry Pi has five status LEDs. Table 7.1 lists Raspberry P 5%
LLEDs and their functions.

o SD Card Slot : Raspberry Pi does not have a built in operating system and sw{ﬁéf
You can plug-in an SD card loaded with a Linux image to the SD card slot. Appendi®?
provides instructions on setting up New Out-of-the-Box Software (NOOBS) &
Raspberry Pi. You will require atleast an 8GB SD card for setting up NOOBS.

o Power Input : Raspberry Pi has a micro-USB connector for power input.

R i i i B
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AT ﬂéal‘f)‘jcdard access |
PWR 3.3V Power is present l

FDX Full duplex [ AN connected

i LNK Link/Network activity

| 1 _00_ LR 109 Mbg I:zjl_;l'fl__connected

Table 7.1: Raspberry Pj Status LEDs

RCA Video
di
GPIO Headers ’ Audio Jack

|

Status LEDs

DSl Connector
Display

| *—— USB2.0
SD Card = vea2
| slot :
|
| . +————— Ethernet
| Micro USB

Power

CSl Connector
Camera

Figure 7.2: Raspberry Pi board

74 Linux on Raspberry Pi

- inux including:
Raspberr Pig s various flavors of Linux inclu . . This
I: Rai ll)i;l:lpg(:s-tgb\i/an Linux is a Debian Wheezy port optimized for Raspberry t?;-n:f;‘;
is thl:. recomr;nl;nded Linux for Raspberry Pi. Appendix-1 provides instructi
et : as Pi.
S€tling up Raspbian on Raspberry o
* Arch: Arch is an Arch Linux port o AMD.de-\,ﬁc; I")r Raspberry Pi.
* Pidora - Pidora Linux is a Fedora Linux (prnmlf:r di(q[ril;l;[i()n for Rasgbecry Pi.
° .. is an XBMC media-cen - . e ok e
» g:i‘:ﬁfgc RSSPB::AL%S ;ds a fast and user-friendly XBMC media-center distributi
: Open § a fas N
* RISC 05 - Rlsg OS is a very fast and compact operating system

——
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Figure 7.3: Raspberry Pi GPIO headers

(o]
o

Figure 7.4: Rasbian Linux desktop
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Figure 7.5: File explorer on Raspberry Pi
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Figure 7.5: Raspberry pi configuration tool
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Figure 7.7 shows the de
ool is used which ¢

Raspbian |
'V Raspbian.
fault browser on

an be launche

75
: - gure
Anux desktop on Raspberry Pi. Flfe on R¥F
Figure 7.6 shows the default conso aspi® |
Raspbian. To configure Rasp Y fig) a5 S0 ¢
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8¢ boot bek,
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Though Raspberry Pi comey w tth an H i
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frequently yseq
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Change dlreLtor\ T o homergy T
cat Show file contents cat file.rxt
Is List files and folders Is /home/pi
locate Search for a file locate file.txt
Isusb List USB devices Isusb |
d Print name of present working pwd n
p directory . |
mkdi . Make directory - mkdir /home/pi/new
: | M (rename) file myv sourceFile.txt destinationFile.txt |
mv ove (ren |
' file.txt l
m - Remove file | rmd ol |
sudo |
reboot Reboot device :udo T
shutdown = Shutdown device ' arep -r “pi” /home/ I
grep Print lines matching a pattern | £ |
) isk ce | ar.
o Report file system disk spa | df -Th
uSARe Z ifconfig
ifconfig Configure a network mterf‘izz N -
C * | petstat -
‘ etwork ~ conne
Netstgg | Pont 0

. stics -
routing tables, interface statl tar -xzf foo.tar.gz

. Chive ! 5 1)1]1/ﬁle.lilf.gz
r Ex[ract/treﬂt‘-v’ % network | wget http:llexamplc.u _
interactive :
Wget Non-in |
downloader
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7.5 Raspberry Pi Interfaces
Raspberry Pi has serial, SP1and 12C interfaces for data transfer as shown in FigUre73
aspberry as serial, ! ,

7.5.1 Serial T
fo herry Pi has receive and transmit (Tx) pins fo i |
The serial interface on Raspberry Pi has recetve (Rx)a )P r ComMunjcy, |

with serial peripherals.

7.5.2 SPI
Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicatmg ,-
with one or more peripheral devices. In an SPI connection, there is one master device 4
one or more peripheral devices. There are five pins on Raspberry Pi for SPI interface:

e MISO (Master In Slave Out) : Master line for sending data to the peripherals,

e MOSI (Master Out Slave In) : Slave line for sending data to the master.

e SCK (Serial Clock) : Clock generated by master to synchronize data transmission
CEO0 (Chip Enable 0) : To enable or disable devices.
CEOQ (Chip Enable 1) : To enable or disable devices.

753 12C

The 12C interface pins on Raspberry Pi allow you to connect hardware modules. I2C interfac
allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line:

7.6 Programming Raspberry Pi with Python

In this section you will learn how to get started with developing Python programs o
Raspberry Pi. Raspberry Pi runs Linux and supports Python out of the box. Therefore. Y
can run any Python program that runs on a normal computer. However, it is the gc‘ﬂ"f";
purpose in'pul{oulpul capability provided by the GPIO pins on Raspberr;/ Pi that makes !
us.ei ul device for ‘lnle.mel of Things. You can interface a wide variety of sensor and actudl™”
with Raspberry Pi using the GPIO pins and the SPI, 12C and serial interfaces. Input from
sensors cunnq:lf:d to Raspberry Pi can be processed and various actions . bi taken. fOf
instance, sending data 1o a server, sendin g an email, triggering a Elayl (if:-ls;lﬂ

7.6.1  Controlling LED with Raspberry pj

Let us start with a basic exan

le of controlling D fre - S
the schemuic diay I controlling an LED from Raspberry Pi. Figure 7.9 show?

I e arvly ?
am ot connecting an 1LED to Raspberry Pi. Box 7.1 shows how (0 tur?

o —__//
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N DTN ae PRTA
import = CELY as | it |
1MPCort time
GPIO.setmode (GPID.E
~ ™ P -y .| - - -
GPI setur ¢ GPIO.QUT
while True:

AT TN avaie why v ds 1 Trita
gL s L™ B Sy A l\-;. r -
time.sleep (1)
PTO ~ 1 -1 - _
<o AU, 00U E«..‘ 8 - e
Time Sieep(l)
7.6.2

Interfacing an LED and Switch with Raspberry Pi

Now let us look at a more detailed example involving an LED and a switch that is used
control the LED.

0X 7.4 shows a Python program for send'?:
an email on switch press. Note that the structyre of this program is similar to the progra™
Box 7.3. This program uses the Python SMTP library for sending an email when the $***
connected to Raspberry Pi is pressed.

= Box 7.3: Python program for controlling an Lgp with a switch

from time import sleep
import RPi1.GPIO as Gpig

GPIo.setmode(GFlo.BCM]

 1 o

Bahaa & Madisetti. ©
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» Box 7.4: Python prograin

tor sending an email on switch press

L - 1 ’
I‘ '3 |]]
fot o O LT nt email>’ ]
p ’ 1 ]
rewitch pressed on Raspberry pi’
Y AT r «Gmail~username>’
sword ' <password>’

* smtp.gmail.com: 587/

setmode (GPIO.BCM)

etup (25, GPIO.IN)

4ef sendemail (from_addr, to_addr_list, cc_addr_list,

subject, message,

r
login, password,
smtpserver
der = 'From: %s \n’ % from_addr

der += 'To: %8 \n’ % 7,7 ,join(to_addr_list)

neader += ‘Cc: %s \n’ % r 7 ,join (cc_addr_list)
header += ’Subject: %s \n \n’ % subject

mes

ST
BET

BeX

proplems = server.sendmail (from_addr, to_addr_list, message)

BEY

while

sage = header + message

yer = smtplib.SMTP (smtpserver)
ver . gtarttls ()
ver,login(login,password)

ver . .guit ()

True:

Lry:

if (GRPIG.,input (2%) = True) !

bl

gendemail (from email, recelipients_list,
o list, nubject, messdge,
uEerhame, pasBword, server)
sleep(.01)

I yoival WwWoVILEs

ti, © -
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i proar'dunn--'u > sy 4 LYY Python
P o= =

~c KeyboardInterrupt;
:—335.“_”_ ]

exit

s interfacing a Light Sengor (LDR) witp, Ras
7.0.

.. yvou have learned how to interface LED anq «

o far Y€ example of interfacing a Light D

ook ;Tm LED on/off based on the light-]

;gm}r:r_ltlu‘i 7.11 shows the schematic diagra
1< =

ide of LDR to 3.3V and other side to
ne S

i

f,,_i_; example). An LED is connected to p

Pberry p

€pendent

m of connectipe .
a 1F capacit
in 18 which ;

DR example, The readLDR() function
evel. In this function the LDR pin i
the capacitor starts charging through the
n reads high (this happens when capacitor

5 ims a count which is proportional to the light 1
'fnll 3 - . .

| ;:nu;put and low and then to input. At this point

;mor (and a counter is started) until the input pi

oltage becomes greater than 1.4V). The counter is stopped when the input reads high. The
VOLlk g

inal count is proportional to the light level as greater the amount of light, smaller is the LDR
mai C ! :
rsistance and greater is the time taken to charge the capacitor.

: i di
Box7.5: Python program for switching LED/Light based on reading LDR reading
| | ol

-mport RPi.GPIO as GPIO

-Tport time

?10.setmode (GPIO.BCM)
{dr_thresholq = 1000
MGHT PIN = 25

def eadLDR (PIN) :

ffading=p

GPIU-sZtup{LIGHT_PIN, GPI0.OUT)

GPIc.cutpur_(pm, False)
Sleep(0.1)
*S€tup (PIN, GPIO.IN) ,
While (GPIQ. input (PIN) ==False):
Iet‘;‘fadin(;,"—‘rea(:iin'g"*'1

In feading
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rate at which the sender sends the data is not toq hi
The congestion control capability of TCP helps :
congestion collapse which can lead to (leﬂrndﬂ.ti
described in RFC 793 |9]. .
UDP : Unlike TCP, which requires carrying out an initi
connectionless protocol. UDP an initial

. ;
" ;.‘h'fur the receiver to process
| IVfllcllng network congestion and
mof network performance. TCP is

\ \ setup procedure, UDP |
o | it sdure, UDP is a
useful for time-sensitive applications that have very

ymall data units to exchange and do not want the overhead of ¢ 1

is a lmnsaclim} oriented and stateless protocol. UDP does r:((:tnnem‘”n et
Jelivery. ordering of messages and duplicate elimination. }.1' ighcrp ITWI;|~C e Buh
can ensure reliable delivery or ensuring connections created CVCl'S e pfmncu}%
Can C red in RFC 768 101, ed are reliable. UDP is

mplication Layer
plication layer protocols define how the applications interface with the lower layer

Ap
rotocols to send the data over the network. The application data, typically in files, is
encoded by the application layer protocol and encapsulated in the transport layer proto’col
which provides connection or transaction oriented communication over the network. Port
aumbers are used for application addressing (for example port 80 for HTTP, port 22 for SSH,

etc.). Application layer protocols enable process-to-process connections using ports.

« HTTP : Hypertext Transfer Protocol (HTTP) is the application layer protocol that
forms the foundation of the World Wide Web (WWW). HTTP includes commands
such as GET, PUT, POST, DELETE, HEAD, TRACE, OPTIONS, etc. The protocol
follows a request-response model where a client sends requests to a server using the
HTTP commands. HTTP is a stateless protocot and each HTTP request is independent
of the other requeéts. An HTTP client can be a browser or an application running
on the client (e.g., an application running on an IoT device, a mobile application or
other software). HTTP protocol uses Universal Resource Identifiers (URIS) to identify
HTTP resources. HTTP is described in RFEC 2616 [11].

o CoAP : Constrained Application Protocol (CoAP) is an application layer protocol for
machine-to-machine (M2M) applications, meant for constrained environments with
constrained devices and constrained networks. Like HTTP, CoAP 1s‘ a wep transfer
protocol and uses a request-response model, however it runs on top (_)t UDP.lﬂStead of
TCP. CoAP uses a client-server architecture where clients communicate with servers

using connectionless datagrams. CoAP is designed to easily interface w%th IéTArg
ds such as GET, PUT, pOST, and DELETE. €O

Like HTTP, CoAP supports metho i
draft specifications are available on [EFT Constrained environments (CoRE) Working
Group website [12].

[
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: ication over a single
i rotocol allows full-duplex communication over a &
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o WebSocket : WO 'h'm messages between client and server. WebSocket 1
namg S sk

B i \ Wwose " y o e
socket connection {& ams of messages to be sent back and forth between the

based on TCP and “‘“m‘iilil::“ the TCP connection open. The client can be a browser.
client ‘ililti sm-\l.l\..r \.\‘l:‘llt\‘rk.::; Iln'l!:dt“ ice. WebSocket is described in RFC 6455 [l3l.-

s m‘.‘ {“,h: l‘;t‘il:dlj:‘ Qll!t.‘l‘lt‘ Telemetry Transport (MQTT) is a light-weight me‘_s'sla‘g.:mg
i '.1,, .h.lwod m!;tho publish-subscribe model. MQTT uses a client-server architecture
\l:!f::':: ltlw‘...*h'ont (such as an loT device) connects to the server (also ¢ f'"e"j \:;Q]}:
Broker) and publishes messages to topics on the server. The t-)roke‘r forwar . t )
messages to the clients subscribed to topics. MQTT is well suited tor constraine
environments where the devices have limited processing and memory resources
and the network bandwidth is low. MQTT specifications are available on IBM
developerWorks [14].

XMPP : Extensible Messaging and Presence Protocol (XMPP) is a protocol for
real-time communication and streaming XML data between network entities. ‘XNIIPP
powers wide range of applications including messaging, presence, data syndication,
gaming, multi-party chat and voice/video calls. XMPP allows sending small chunks
of XML data from one network entity to another in near real-time. XMPP s a
decentralized protocol and uses a client-server architecture. XMPP supports both
client-to-server and server-to-server communication paths. In the context of IoT,
XMPP allows real-time communication between IoT devices. XMPP is described in
RFC 6120 [15].

DDS : Data Distribution Service (DDS) is a data-centric middleware standard for
device-to-device or machine-to-machine communication. DDS uses a publish-subscribe
model where publishers (e.g. devices that generate data) create topics to which
subscribers (e.g., devices that want to consume data) can subscribe. Publisher is an

object responsible for data distribution and the subscriber is responsible for receiving

MESSALEs 10 exchanoec wh: . )

St denveredcl;anges Which then distribute message copies to queues. Messages are
Or the congur, Y the broker (o (he consumers which haye Subscribed to the bue

SUMErs can pull (he messages from the queues. AMQP Speciﬁcacil‘ u?s

3 10n is

Bahga & Madisetti. © 2015
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CHAPTER 1
Introduction

1.1 Welcome to the World of Embedded Processors
1.1.1 Where Are the Processors Used?

It you are new to microcontrollers ot ARM® processors, first I would like to give you a
very warm welcome.

Processors are used in majority of electronic products. For example, your mobile phones,
televisions, washing machines, cars, bank card (smartcards), and even simple devices like
the remote control for your radio can have processors inside, In most cases, these
processors are placed inside in chips called microcontrollers. In modern microcontrollers,
the chip also contains the essential elements like memory systems and interface hardware
(often called peripherals). There are many different types of microcontrollers; they can be
available with different processors, memory sizes, and peripherals inside, and can be
available in different packages (Figure 1.1).

Large numbers of microcontrollers are designed for general purpose, which means they
can be used in wide range of applications. Sometimes processors are used in chips that are

NXP LPC1114

(Cortex-Mo0) Freescale Kinetis KLO3
N

(Cortex-MD+)

NXP LPC1343
(Cortex-M3)

Microcontrollers are available in wide range of physical packages.

The Debinitive Guide to ARM” Cortex®-M0 und Cortex-MU+ Processoni. hitpa/idx,dulorg/10.1016/B978-0-12-503277-0,00001-1
Cupyright © 2015 Elsevier Inc All nghts reserved 1
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Figure 1.3

Overview of the ARM processor family.

In around 2003, ARM realized that it needs to diversify the processor products to address
different technical requirements in different markets. As a result, three product profiles are
defined, and the Cortex® processor brand name is created for the naming of these new

Processors.

(Cortex-A processors—These are Application processors, which are designed to provide
high performance and include features to support advanced operation systems (e.g.,
Android, Linux, Windows, i0S). These processors typically have longer processor pipeline
and can run at relatively high clock frequency (e.g., over 1 GHz). In terms of features,
these processors have Memory Management Unit (MMU) to support virtual memory
addressing required by advanced OS, optional enhanced Java support, and a secure
program execution environment called TrustZone™.

( The Cortex-A processors are typically used in mobile phone, mobile computing devices
(e.g., tablets), television, and some of the energy efficient servers. |

Wh:i{!hc Cortex-A processors have high performance, the processor is not designed to
provide rapid response time to hardware events (i.e., real-time requirements). As a result, a
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different profile of high-performance processors is needed, and they are the Cortex-R

processors.

[Corlcx-l{ processors—These are Real-Time, high performance processors that are very
good at data crunching, can run at fairly high clock speed (e.g., 500 MHz to 1 GHz range),
and at the same time can be very responsive to hardware events. They have cache
memories as well as Tightly Coupled Memories, which enable deterministic behavior for
interrupt handling. The Cortex-R processors are also designed with additional features to
enable much higher system reliability such as Error Correction Code (ECC) support for
memory systems and dual-core lock-step feature (i.c., redundant core logic for error
detection). |

[_Thc Cortex-R processors can be found in hard disk drive controllers, wireless baseband
controllers/modem, specialized microcontrollers such as automotive and industrial
controllers. |

\\’hile{lilc Cortex-R processors can be very good at high-performance microcontroller
applications, they are quite complex designs and can consume fair amount of power.)
Therefore, another group of processors are need for the very low-power embedded
products, and they are the Cortex-M processors.

fCortex-M Processors—The Cortex-M Processors are designed for main stream
microcontroller market where the processing requirement is less critical, but need to be
very low power. Most of the Cortex-M Processors are designed with a fairly short pipeline,
for example, two stage in the Cortex-M0+ processor and three stages in Cortex-MO,
Cortex-M3, and the Cortex-M4 Processors. The Cortex-M7 processor has a longer
pipeline (six stages) due to higher performance requirement, but still the pipeline is a lot
shorter than the designs of high-end application proccsso@ As a result of the shorter
pipeline and low power optimizations in the design, the maximum clock frequencies for
these processors are slower than Cortex-R and Cortex-A processors, but this is rarely a
problem because even a 100 MHz Cortex-M-based microcontroller can do a lot of work.

G‘ he Cortex-M processors are designed to provide very quick and deterministic interrupt
responses. To achieve this, the processor’s execution control part is closely coupled with a
built-in interrupt controller called Nested Vectored Interrupt Controller (NVIC). The NVIC
provides powerful and yet easy-to-use interrupt’s management. In general, the Cortex-M
processors are very easy to use, with almost everything can be programmed in C. |

Due to their low power, fairly high performance, and ease of use benefits, the Cortex-M
processors are selected by most major microcontroller vendors in their flagship
microcontroller productsﬁ“he Cortex-M processors are also used in some of the sensors,
wireless communication chipsets, mixed signal ASICs/ASSPs, and even used as controller
in some of the subsystems in complex application processors/SoC products.
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In addition to the Cortex proc

: tronic 11D cards,
payment systems, and even some electron

1.2.3 Blurring the Boundaries

it vi . S of the microcontrollers
1 ways, the term microcontroller can be a bit \.ig_u‘:. f‘mlwz'ir < Ssincninatng
0 SOme ways, . G s |
arc based on application processors such as ARM‘)‘.F:J li.\:cr(c)comhcm"crmvendoﬂ S,:cmng
s . . '] » - )
: eS8 ; . In last few years, some of the
ARMYE processor family, peegpei-piliion
o produce microcontroller products based on the ARM Co Processo

B (e.g.. Texas
(¢.g.. Freescale Vybrid. Atmel SAMASD3). and ARM Cortex-R processors (e.g
ln;mmcnl\ TMSS570. Spansion Traveo Family).

i i complex SoC
At the same time, the Cortex-M processors are also being used |I[n ma[ny P
devices as power management controller. /O subsystem controller, etc.

In the next generation of Cortex-R processor based on the ARMv8-R archx:;:ttlf:&al:ebe
architecture definition also allows the processor to incorporate a MMU so itc

used with a full feature OS like Linux or Android. and at the same time handle real-time
tasks based on a virtualization mechanism.

1.2.4 ARM Cortex-M Processor Series

The instruction set of the Cortex-M0
an application task involves complex
instructions is needed to ac
because of the sim
Cortex-M3 proces
instructions (most

and Cortex-M0+ Processors are fairly simple. But if

data processing, then potentially a long sequence of
complish the operations in the Cortex-M0O/M0+- processor
ple instruction set. In those cases, it might be better to use the

sor because the Cortex-M3 Processor supports g number of extra
ly 32 bit) that supports the following:

More memory addressing modes
Larger immediate data in the 32-pjy instructions



Introduction 9

Table 1.1: The Cortex®-M Processor family

Processor

Descriptions

Cortex-M0

Cortex-MO+

Cortex-M1

Cortex-M3

Cortex-M4

Cortex-M7

The smallest ARM® processor—only approximately 12000" logic gates at minimum
configuration. It is very low power and energy efficient.

The most energy efficient ARM processor—it has a similar size as the Cortex-M0
processor, but with additional system level and debug features (all optional), and have
higher energy efficiency than the Cortex-M0 processor design. It supports the same
instruction set as the Cortex-M0 processor.

It is a small processor design optimized for field programmable Gate Array (FPGA)
applications. It has the same instruction set and architecture as in the Cortex-M0
processor, but has FPGA specific memory system features.

When compared to the Cortex-M0 and Cortex-M0+ processors, the Cortex-M3 has a
much more powerful instruction set, and its memory system is designed to provide
higher processing throughput (e.g., use of Harvard bus architecture). It also has more
system level and debug features, but at a cost of larger silicon area (minimum gate
count is about 40000 gates) and slightly lower energy efficiency. In general, the energy
efficiency of the Cortex-M3 processor is still a lot better than many traditional 8-bit
and 16-bit microcontroller devices because the performance is substantially higher.
The Cortex-M3 processor is very popular in the 32-bit microcontroller market.

The Cortex-M4 processor contains all the features of the Cortex-M3 processor, but
with additional instructions to support DSP applications and have an option to
include a floating point unit (FPU). It has the same system level and debug features as
the Cortex-M3 processor.

It is a high performance processor designed to cover application spaces where the
existing Cortex-M3 and Cortex-M4 processors cannot reach. Its instruction set is a
superset of the Cortex-M4 processor, for example, supporting both single and double
precision floating point calculations. It also has many advanced features, which are
usually find in high-end processors such as caches and branch predictions.

“The exact gate count of a processor depends on many factors such as the semiconductor process library used, the chip

design tool used, the design optimization options, signal routing constraints, etc.

Longer branch and conditional branch ranges

Additional branch instructions
Hardware divide instructions

Multiply accumulate (MAC) instructions
Bit field processing instructions
Saturation adjustment instructions

As a result, the Cortex-M3 processor can handle complicate data processing quicker.
The code size might be similar to Cortex-MO0 or Cortex-M0+ processor because although

fewer number of instructions are required to perform the same operations, and these
powerful instructions are mostly 32 bit instead of 16 bit. These 32-bit instructions also

enable the Cortex-M3 processor to utilize the registers in the register bank better.

In some applications, however, you might need to perform some DSP operations such as
filtering, signal transformations (e.g., Fast Fourier Transform), etc. In these applications,
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Figure 1.4
Instruction set of the Cortex®-M processor family.

you might want to use the Cortex-M4 processor because the Cortex-M4 processor added
another group of instructions targeted for these applications—these included Single
Instruction Multiple Data (SIMD) operations and saturated arithmetic instructions. The
internal data path of the processor is also redesigned to enable single cycle MAC

operations.

The Cortex-M4 processor also has an optional floating point unit that support IEEE-754
single precision floating point calculations. It does not mean that you cannot perform
floating point processing in the Cortex-MO0, Cortex-MO0-t, or other processors without the
floating point unit. If you are using these processors for floating point operations, the
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compiler will insert runtime librar

y functions to handle the floating point calculation using
software, which can take muc

h longer to do and need additional code size overhead.
For applications that demand
precision floating point ¢
best choice. Tt is designe
same programmer's mod

very high data-processing requirements, or if double
alculation is needed, then the Cortex-M7 processor might be the
d 10 provide very high data-processing performance, but use the
el and a superset of the instruction set as Cortex-M4 processor.
To decide which processor to use in a
requirements of the application. Some

Please note that you might also need to consider the differences of the system-level
features and performance when selectin

project, you need to understand the processing
general guideline is shown in Table 1.2,

g the right Cortex-M processor. An overview of the
-3 and a comparison of the performance is shown in

Table 1.4. Please note that the Cortex-M processors are very configurable and the exact
features can be customized by the chip designers and vary among different devices.

In general, the ARM Cortex-MO and Cortex-M0+ processors are both very suitable for

ultra-low power applications, and because the instruction set and programmer’s model are
relatively simple, and the architecture is very C-friendly, they are also very suitable for
beginners. For example, there is no need to learn a ot of tool chain-specific keywords or

data types to get the application to work on a Cortex-M microcontroller, unlike many 8-bit
or 16-bit architectures.

Table 1.2: The applications for various Cortex®-M Processors

Processor Applications

Cortex-M0, Cortex-M0+ General data processing and 1/0 control tasks,

processors Ultra low power applications.
Upgrade/replacement for 8-bit/16-bit microcontrollers.
Low-cost ASICs, ASSPs

Cortex-M1 Field Programmable Gate Array(FPGA) applications with small to
medium data Processing complexity. (For high-complexity data
processing there are FPGAs with built-in Cortex-A processors such as
Xilinx Zynq-7000 and some of the Altera Arria V SoCs and Cyclone V
SoCs).

Cortex-M3 Feature-rich/high-performance/ low-power microcontrollers.
Light-weight DSP applications.

Cortex-M4 Feature-rich/hi gh-performance/ low-power microcontrollers.
DSP applications.
Applications with frequent single precision floating point operations.

Cortex-M7

Feature-rich/very high performance power microcontrollers.
DSP applications.

Applications with frequent single or double precision floating point
operations,
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Table 1.3: An overview of the system level and debug features
for various Cortex™-M Processors

Features Cortex-M0  Cortex-MO+  Cortex-M1 Cortex-M3  Cortex-M4 Cortex-M7

Number of 1-32 1-32 1,8,16,32 1-240 1-240 1-240

interrupts

Interrupt 4 4 4 8-256 8—256 8-256

priority levels

FPU - Optional  Optional (single
(single precision/single +
precision)  double precision)

OS support Y Y Optional Y Y Y

Memory Optional Optional  Optional  Optional

Protection

unit

Cache - - - - Optional

Debug Optional Optional Optional Optional ~ Optional  Yes

Instruction - Optional - Optional  Optional Optional ETM

trace MTB ETM ETM

Other trace - - Optional Optional Optional

Table 1.4: Performance of various Cortex®

M Processors with commonly used benchmarks

Features Cortex-M0D Cortex-M0+ Cortex-M3 Cortex-M4 Cortex-M7
Dhrystone 2.1 (per MHz) 0.9 0.95 1.25 1.25 2.14
CoreMark 1.0 (per MHz) 2.33 2.46 3.34 3.40 5.01

1.2.5 Quick Glance on the ARM Cortex-MO and Cortex-MO+ Processor

The Cortex-MO and Cortex-M0+ Processors:

* Are 32-bit Reduced Instruction Set Computing (RISC) processor, based on an architec-
ture specification called ARMv6-M Architecture. The bus interface and internal data

paths are 32-bit width.

* Have 16 32-bit registers in the register bank (r0 to r15). However, some of these regis-
ters have special purposes (e.g., R15 is the Program Counter, R14 is a register called

Link Register, and R13 is the Stack Pointer).

The instruction set is a subset of the Thumb Instruction Set Architecture. Most of the
instructions are 16 bit to provide very high code density.

Support up to 4 GB of address space. The address space is architecturally divided into a
number of regions.

Based on Von Neumann bus architecture (although arguably the Cortex-M0+ processor
have a hybrid bus architecture because of an optional separate bus interface for fast
peripheral register accesses, see section 4.3.2 Single Cycle I/O Interface in Chapter 4).
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» Designed for low-power applications, including architectural support for sleep modes
and have various low power features at the design/implementation level,

+ Includes an interrupt controller called NVIC. The NVIC provides very flexible and

powerful interrupt management.

The system bus interface is pipelined, based on a bus protocol called Advanced High-

performance Bus (AHB™) Lite. The bus interface supports transfers of 8-bit, 16-bit, and

32-bit data, and also allows wait states to be inserted. The Cortex-M0+ processor also

have an optional bus interface (Single Cycle 1/O interface, see section 4.3.2) for high-

speed peripheral registers, which is separated from the main system bus,

Support various features for the OS (Operating System) implementation such as a

system tick timer, shadowed stack pointer, and dedicated exceptions for OS operations.

Includes various debug features to enable software developers to create applications

cfficiently.

Designed to be very easy to use. Almost everything can be programmed in C and in

most cases no need for special C language extension for data types or interrupt handling

support.

Provide good performance in most general data processing and 1/O control applications.

The Cortex-MO0 and Cortex-M0+ processors do not include any memory and have only
got one built-in timer which is primarily for OS operations. Therefore a chip designer
needs to add additional components in the chip design themselves.

1.2.6 From Cortex-MO Processor to Cortex-M0O+ Processor

The ARM Cortex-MO processor was released in 2009. It was a ground-breaking product
because it is the first product that demonstrated it is possible to cramp a 32-bit processor
into the silicon footprint similar to an 8-bit or 16-bit processors, while still able to make

the design usable and provide excellent energy efficiency and a decent performance for a
32-bit processor.

Although the Cortex-MO processor is a lot smaller than the Cortex-M3 processor (which
was released in 2005), it maintains a number of key advantages as in Cortex-M3
Processor:

» Flexible interrupt management using a built-in interrupt controller called NVIC

» OS support features including a timer hardware called SysTick (System Tick timer) and
exception types dedicated to OS operations

» High code density

» Low power support such as sleep modes

» Integrated debug support

« Easy to use (almost everything programmable in plain C language)
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Xmg?::‘l‘\’w pmcesso:- has been a very successful product, and was the fastest licensed

ARM e essor'm 2009: .After the Cortex-MO processor is released, the designers in

Sesions € received addl.tlonal feedback. from customers, microcontroller users and chip

Corti . ﬁ,oand ARM dec1f:lcd that there is an opportunity for an enhanced version for the
~ViU processor, which was subsequently called the Cortex-MO0+ processor.

The Co'rt_cx—MO-i- processor supports all the features available in the Cortex-MO processor,
but additional features were added to make it more powerful (these are all configurable by

the chip designers):

*  Unprivileged execution level and Memory Protection Unit (MPU)—this feature is
available in other ARM processors such as the Cortex-M3 processor. It allows an OS to
execute some of the application tasks with an unprivileged level so that the OS can
impose memory access restrictions. For example, the unprivileged software cannot
access critical system registers in the processors like NVIC registers, and memory
access permissions can be managed by the MPU. In this way, a system can be made
more robust because a misbehaving unprivileged task cannot corrupt critical data used
by the OS kernel and other tasks.

*  Vector Table relocation—again, this is a feature already existing in the Cortex-M3

processor. By default, the vector table is defined as the start of the memory (address

0x00000000). The Vector Table Offset Register allows the vector table to be defined in
other memory locations such as a different program memory location or in SRAM. This
is very useful for microcontroller devices, which might have separated vector table for
boot process and user applications.

Single Cycle I/O interface—this is a separate bus interface specifically added to allow

frequently accessed I/O registers to be read/write in a single cycle. Without this feature,

a load/store operation needs to go through the pipelined system bus, which needs two

clock cycles per access. This feature enables microcontrollers or embedded system to

have higher I/O performance, as well as higher energy efficiency in /O intensive

operations.
Internally to the processor design, there are also some significant changes. Instead of using
a three-stage pipeline as in the Cortex-MO0 and Cortex-M3 processors, the Cortex-M0+
processor is designed with a two-stage pipeline. This reduces the number of flip-flops in
the processor, and hence reduces the dynamic power, and provides slightly higher
performance at the same time because the branch penalty is reduced by one clock cycle.

In the Cortex-MO+ processor pipeline, as shown in Figure 1.5, a small part of the
instruction decoding operations is carried out as soon as the instruction enters the

. . i —— . i Y 764 )
I Cortex-MO Processor—Fastest Licensing ARM Processor (http://www.arm.com/about/newsroc m/26419.php)



Introduction 15

[ Cortex-Mos
Processor Pipeline Main
Instruction

ll"l
decode

Pipeling
l'.l"

| |
I
|

AU 088 i, ‘:;ﬂ'ur:m :.m':l #"*7\./ Insteuetion Builfer ,—~

! i: ..b{r"\ ‘} - trmf:ml

| » —T ,_x” | Plpeline
( ""_:':“' B { Registors ’

...-_{q ‘ jﬂ- T

o A ——
Beneration
£

Clock

Instruction wy ;.';'.";‘ fw*? ]

|
D",d.m §i
| B

o S
Fetch\ Decm
— el P
N

I
{ I
Pre-decode I’ "‘Mpln decode

|

I

Instruction N+l
|

|

g
e ARM® Corter-MU-f- Processor,
instruction decoding is combined with the

Processor is redyceq by 30% when

Comparing betweep Cortex-M0 Processor and the Cortex

system level, the differenc
consumed by the memory system,

In order 1o reduce System-level power
reduce the program memory accesses:
First, by shortening the Processor to g two-stage pipeline design, the branch shadow of the
processor is reduced, I a pipeline processor, when g branch instruction jg executed, the

» additiona] Optimizations haye been implementeq to




16 Chapter 1

.l“.lgx-lmum branch shadow is 2
instructions (1 word) and minimum
is 0 instruction

Branch shadow

{ ADD cMP

BGE Label
(branch)

Program flow Instructions fetched but not
executed due to branch

Figure 1.6
Power wastage reduction by reducing branch shadow. Image courtesy of ARM®.

mstructions following the branch instruction would have been fetched by the processor.
These instructions fetched are called branch shadow (Figure 1.6), and they are discarded
by the processor and hence a long branch-shadow means wasting more energy.

Secondly, when a branch operation takes place and if the branch target instruction
occupies only the second half of a 32-bit memory space (as shown in Figure 1.7), the
instruction fetch is carried out as a 16-bit transfer. In this way, the program memory can
switch off half of the byte lanes to reduce power.

The amount of power reduction by these techniques depends on how often branch
operations are carried out in the application code.

Finally, in linear code execution, the program fetches are handled as 32-bit accesses. Since
most of the instructions are 16-bit, each instruction fetch can provide up to two
instructions. This means that the processor bus can be in idle state half of the time if there

0x00001006

..0100001008 0x0000100A | 0x0000100C 0x0000100D

Word boundry I

Program flow

Figure 1.7
Power wastage reduction by fetching branch target with minimum transfer size.
Image courtesy of ARM®.
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Flgure 1.8
Program fetch power reduction by fetching up to two instructions at a time
Image courtesy of ARM™

18 no data access instruction executed (Figure 1.8). Chip designers can utilize this

characteristic to reduce the power consumption in the program memory (e.g.. flash
memory).

Another important enhancement in the Cortex-M0+ processor is the adding of a feature
called Micro Trace Buffer (MTB). This unit enables low-cost instruction trace, which is
very useful during software development, for example, helping to investigate the reason
for a software failure. The details of the MTB are covered in Chapter 13 and appendix E.

The Cortex-M0+ processor have additional enhancements when compared to the
Cortex-MO processor in terms of chip design aspects (most of these are invisible to
microcontroller users). For example, a hardware interface was added to allow the startup

sequence of the processor to be delayed, which is useful for many SoC designs with
multiple processors.

Today, many microcontroller vendors already started offering microcontroller products
based on the Cortex-M0+- processors.

1.2.7 Applications of the Cortex-MO and Cortex-M0+ Processor

The Cortex-MO0 and Cortex-MO0+ processors are used in a wide range of products.

Microcontrollers

The most common usage is microcontrollers. Many Cortex-M0 and Cortex-M0+
microcontrollers are low-cost devices and are designed for low-power applications. They
can be used in applications including computer peripherals and accessories, toys, white
goods, industrial and HVAC (heating, ventilating, and air conditioning) controls, home
automation, etc.

When comparing the microcontrollers based on the Cortex-M0 and Cortex-M0+
processors to traditional 8-bit and 16-bit microcontroller products, the Cortex-M
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microcontrollers allow embedded products to be built with more features, more l
sophisticated user interface, due to support of larger address space, powerful interrup
control, and higher performance.

The better performance and small size also bring the benefit of higher energy efficiency.
For example, for the same processing task, you can finish the processing quicker and allow
the system to stay in sleep modes longer.

Another advantage of using ARM Cortex-M processors for microcontroller applications is
that they are very easy to use, Therefore it is very appealing to many microcontroller
vendors as product support and educating the users can be challenging for some other
processor architectures

ASICs and ASSPs

Another important group of applications for the Cortex-M0 and Cortex-MO+ processors
are ASICs and ASSPs. For example, there are a number of touch screen controllers,
sensors, wireless controllers, Power Management ICs (PMIC), and smart battery
controllers designed based on the Cortex-M0 or Cortex-M0+ processors.

In these applications, the low gate count advantage of the Cortex-MO0 and Cortex-M0-+
processors allow high performance processing capability to be included in chip designs
that traditionally only allow 8-bit or simple 16-bit processors to be used.

System on Chips

For complex SoC, the designs are often divided into a main application processor system
and a number of subsystems for: I/O controls, communication protocol processing, and
system management. In some cases, the Cortex-MO and Cortex-MO0-+ processor can be
used in part of the subsystems to off-load some activities from the main application
processor, and to allow small amount of processing be carried out while the main
processor is in standby mode (e.g., in battery powered products). It might also be used as a
System Control Processor (SCP) for boot sequence management and power management.

1.3 What Is Inside a Microcontroller
1.3.1 Typical Elements Inside a Microcontroller

There can be many components inside a basic microc

ontroller. For example, a simplified
block diagram is shown in Figure 1.9:
In the diagram there are a lot of acronyms. They are explained in Table 1.5.

As shown in Figure 1.9, there can be a lot of components in a microcontroller (not to
mention other complex interfaces like Ethernet, USB, etc.). In some microcontrollers you
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Technical Overview

2.1 What are the Cortex™-MO and Cortex-MO+ Processors?

The ARM™ Cortex-Mo processor and Cortex-MO+ processors are both 32-bit processors.
Their internal registers in the register banks, data paths, and the bus interfaces are all 32

bit. Both of them have a single main system bus interface, therefore they are considered as
Von Neumann bus architecture.

The Cortex-M0 4 processor has an optional single cycle 1/0 interface that is primarily for

taster peripheral 170 register accesses. Therefore, it is possible to say the Cortex-M0)+
processor has limited Harvard bus archi

The key characteristics of the Cortex-MO0 and Cortex-MO0+ processors are as follows:

Processor pipeline
* The Cortex-M0 processor has a three-sta

*  The Cortex-M0+ processor has a two-st
execute)

Instruction set

ge pipeline (fetch, decode, and execute)
age pipeline (fetch + predecode, decode +

*  32-bit addressing supporting up to 4 GB of memory space

* The system bus interface is based on an on-chip bus protocol called AHB-Lite,
supporting 8-bit, 16-bit, and 32-bit data transfers

The AHB-Lite protocol is pipelined, support high operation frequency for the system.

Peripherals can be connected to a simpler bus based on APB Protocol (Advanced
Peripheral Bus) via an AHB 1o APB bus bridge.

The Definitive Guide W ARM" Cortex®-Mu und Cortex-Mos Processors, Witpeida duluy W10 I WBYTR 12500277 Wb 2
Copynght © 20)% Elsevier Inc Al nghts reserved
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Interrupt Handling

The processors include a built-in interrupt controller called the Nested Vectored Interrupt
Controller (NVIC). This unit handles interrupt prioritization and masking functions. It
supports up to 32 interrupt requests from various peripherals (chip design dependent), an
additional Non-Maskable Interrupt (NMI) input, and also support a number of system
exceptions.

Each of the interrupts can be set to one of the four programmable priority levels. NMI
has a fixed priority level.

Operating Systems (OS) support

Two system exception types (SVCall and PendSV) are included to support 0S operations.
An optional 24-bit hardware timer called SysTick (System Tick Timer) is also included
for periodic OS time keeping.

The Cortex-M0+ processor support privileged and unprivileged execution level

(optional to chip designers). This allows OS to run some of the application tasks with
unprivileged execution level and impose memory access restrictions to these tasks.

The Cortex-M0+ processor has an optional Memory Protection Unit (MPU) to allow

0S to define memory access permission for application tasks during run time.

Low Power support

Architecturally two sleep modes are defined as normal sleep and deep sleep. The exact
behaviors in these sleep modes are device specific (depends on which chip you are
using). Chip designers can also add device specific power saving mode control registers
to expand the number of sleep modes or to allow the sleep mode behavior for each part
of the chip to be defined.

Sleep mode can be entered using WFI (Wait for Interrupt) or WFE (Wait for Event)
instructions, or using a feature called Sleep-on-Exit to allow the processor to enter sleep
automatically.

Additional hardware level supports t0 enable chip designers to create better power
reductions based on the sleep mode features, for example, the Wake-up Interrupt

Controller (WIC).

Debug

The debug system is based on the ARM CoreSight™ Debug Architecture. It is a scalable
debug architecture that can support simple-single processor designs to complex multi-
processor designs.

A debug interface that can either be based on JTAG protocol (4 or five pins), or Serial
Wire Debug protocol (2 pins). The debug interface allows software developers to access
debug features of the processors.

Support up to four hardware breakpoints, two data watchpoints, and unlimited software
breakpoint using BKPT (breakpoint) instruction.

Support basic program execution profiling using a feature called Program Counter (PC)
Sampling via the debug connection.
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Power management Interface
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ey Procassor Bus Interface

Memory and
Peripherals

Figure 2.2
A simplified block diagram of the Cortex®-M0 Processor.

The WIC is an optional unit. In low-power applications, the microcontroller can enter
wered down. Under this situation, the

standby state with most parts of the processor po
WIC can perform the function of interrupt masking while the NVIC and the processor
d, the WIC informs the power

core are inactive. When an interrupt request is detecte
management to power up the system so that the NVIC and the processor core can then

handle the rest of the interrupt processing.
The debug subsystem contains various functional blocks to handle debug control, program

breakpoints, and data watchpoints. When a debug event occurs, it can put the processor
core in a halted state SO that embedded developers can examine the status of the processor

at that point.
The internal bus system, data path in the processor core, and the AHB-Lite bus interface
in many ARM® processors.

are all 32-bit wide. AHB-Lite is an on-chip bus protocol used
This bus protocol is part of the AM]‘.’..A‘]D (Advanced Microcontroller Bus Architecture)
specification, which is a bus architecture developed by ARM and widely used in the IC

design industry-



Technical Overview 33

The JTAG or Serial Wire interface units provide access to the bus system and debugging
functionalities. The JTAG protocol is a popular 4-pin (5-pin if including a reset signal)
communication protocol commonly used for IC and PCB testing. The Serial Wire protocol
1s 2 newer communication protocol that only requires two wires, but it can handle the same
debug functionalities as JTAG. As illustrated in the block diagrams (Figures 2.2 and 2.3),
the debug interface module is separated from the processor design. This is required in the
CoreSight™ Debug Architecture where multiple processors can share the same debug
connections. There are a number of additional signals for multiprocessor debug support not
shown in the diagrams.

The Cortex-MO+ processor is very similar (as shown in Figure 2.3) to Cortex-M0
processor. The only addition is the adding of the optional MPU, single cycle VO interface
bus and the interface for the MTB. The processor core internal design is also changed to a
two-stage pipeline arrangement.

management Single Cydle

s
Waheup Micro Trace JTAG / )
> interrupt Bufter (MTB) Senai-Wire Connection
> Controler Debug to debugger
(WiC) intertace
B Trace
B e rtorface b i
> tiesies
x Inkerrug Vecior
equests and - - Processor core Cetug
NMI il subsystem
o NVIC) " PE &
internal Bus Systemn
Processor AHB LITE Single Cycle
System bus nterface VO interface
{integraton Conex-440+ unit _ _unit
W) le 7._.. o &SW .:f/‘ -_.-.
— =~ /-' B S -
Memory and Fast penipherais
Pericherak
Figure 2.3

A simplified block diagram of the Cortex®-M0+ processor.
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ll“hc MPU is a programmable device used to define access permission of the memory map.
n mmc‘ of the applications where an OS is used, application tasks can be executed with
an unprivileged execution level with restrict memory access defined by the MPU which is
programmed by the OS.

The single cyele . 5 " . ;
h'“- :‘I“U\ cycle VO interface provides another bus interface with faster access compared to
the Jdate svs IR P e : e T

AHB-Lite system bus (pipelined operation). The MTB is used to provide instruction trace.

In both Cortex-M0 and Cortex-MO | processors, a number of components in the
I‘“‘}““U!ﬁ are optional. For example, the debug support, MPU and the WIC are all
“I‘“\“Tal. Some other components like the NVIC are configurable: allowing chip designers
to define the features available, for example, the number of interrupt requests (IRQ).

2.3 Typical Systems

As you can see from the block diagrams, the Cortex®-MO0 and Cortex-M0+ processors do
not ’Ct‘main memories and peripherals. Chip designers need to add these components to the
d‘_?SIgnS- As a result, different Cortex-M processor-based microcontrollers can have
different memory sizes, address map, peripherals, interrupt assignment, etc.

In a simple microcontroller design based on a Cortex-M processor, the design would
consist of the following:

« A memory for program code storage, usually a Read-Only-Memory (ROM) component,
or reprogrammable memory technologies such as flash memory.

« A read—write memory for data (including variables, stack, etc.), usually based on Static
Random Access Memory (SRAM).

« Various types of peripherals.

« Bus infrastructure components for joining the processor to all the memories and
peripherals.

separate ROM device with boot code to boot up the

In some cases, there can also be a
d. This is typically called

microcontroller before the program in the user flash is execute
boot ROM or boot loader.

For a simple design with Cortex-M0 processor, the design could look like the one shown

in Figure 2.4.

A typical design based on the Cortex-M0 processor might partition the bus system into

two parts, which are as follows:
« System bus connected to the memories including ROM, flash memory (for user program
storage), the SRAM, a few number of peripherals, and a bus bridge to the peripheral

bus system.
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Figure 2.4
A simple system with the Cortex®-M0 Processor.

*  The peripherals are connected to the peripheral bus, which might have a different oper-
ating frequency compared to the system bus.

It is quite common for some of the peripherals to be connected to a separated peripheral
bus, which is linked to the main system bus via a bus bridge. This bus protocol for the
peripheral bus is typically based on APB, which is a bus protocol defined in the AMBA®,

The uses of a separated APB peripheral bus are as follows:

*  Allows lower hardware cost because the APB

simpler than AHB-Lite (pipelined operations)
*  Allows the peripheral bus to run at a different clock frequency than the main system bus
* Avoids large combinational logic in the bus infrastructure for the main system bus,

which could become the bottle neck in terms of getting to get high operating frequency.

Many peripherals might present in a microcontroller designs and the bus fabric for pe-
ripherals can become quite large.

protocol (non-pipelined operations) is

Another group of important connections are the interru
generate interrupt requests, including the General Pu
In most microcontroller designs, external devices €O
generate interrupt request to the processor via some
synchronization logic.

PIS—A number of peripherals can
rpose Input/Output (GP10O) modules.
nnected to certain GP1O pins can
additional conditioning and
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Figure 2.5
A simple system with the Cortex®-M0+ Processor.

For a system based on the Cortex-M0+- processor, the system design can be very similar,
like the one shown in Figure 2.5.

In this design, the high-speed peripherals are moved to the single cycle /O interface bus
for faster /O performance, and the MTB is added between the AHB-Lite system bus and
the SRAM for support instruction trace capture.

Potentially the processor might not be the only component in the system that can generate
bus transactions. In many microcontroller products, there is also a component called Direct

Memory Access (DMA) controller. Once programmed, the DMA controller can carry out
memory accesses on requests from peripherals without processor intervention (Figure 2.6)

The DMA controller can perform data transfers between memory and peripherals, or
between memories (e.g., to accelerate memory copy). This is commonly needed for
microcontrollers with high bandwidth communication interface like Ethernet or QSB.
However, it can also benefit some low-power applications, for example, by avoiding
waking up the processor from sleep mode (0 collect sma
peripherals.

11 amount of data from
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MeinSiack Porer |

Processs Stack Pointer /

Figure 4.3
Registers in the Cortex®-M0 and Cortex-M0+ processors.

The detailed descriptions for these registers are as follows:
RO—R12

Registers RO—R12 are for general uses. Due to the limited space in the 16-bit Thumb®
instructions, many of the Thumb instructions can only access RO—R7, which are also

called the low registers. While some instructions, like MOV (move), can be used on all

(e.g., RO) or lower case (e.g., 10) to specify the
register to be used. The initial values of RO—R12 at reset are undefined.

R13, Stack Pointer

R13 is the Stack Pointer. It is used for accessing the stack memory via PUSH and POP
operations. There are physically two different stack pointers in Cortex-M0 and Cortex-
MO+ Processors.

* The Main Stack Pointer (MSP, or

The stack pointer selection is determin

. dinger: : ed by the CONTROL register, one of the special
registers which will be introduced late

r (CONT, ROL—-Spe(‘f'u! Register).
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When using ARM development tools, you can access the stack pointer using either “R13”
or “SP.* Both upper case and lower case (¢.g., “r13" or “sp™) can be used. Only one of the
stack pointers 1§ visible at a given time, However, you can access to the MSP or PSP
directly when using the special register access instructions MRS and MSR. In such cases,
the register names “MSP™ or “pSP” should be used.

The lowest 2 bits of the stack pointers are always zero and writes to these 2 bits are ignored.
In ARM processors, PUSH and POP are always 32-bit accesses because the registers are
32-bit. and the transfers in stack operations must be aligned to a 32-bit word boundary. The
initial value of MSP is loaded from the first 32-bit word of the vector table from the program
memory during the start-up sequence. The initial value of PSP is undefined.

It is not necessary to use the PSP. In many applications, the system can completely rely on
the MSP. The PSP is normally used in designs with an 0S, where the stack memory for
0S Kemel and the thread-level application codes must be separated.

R14, Link Register

R14 is the Link Register (LR). The LR is used for storing the return address of a subroutine
or function call. When BL or BLX is executed, the return address is stored in LR. At the end
of the subroutine or function, the return address stored in LR is loaded into the program
counter (PC) so that the execution of the calling program can be resumed. In the case where
an exception occurs, the LR also provides a special code value which is used by the
exception return mechanism. When using ARM development tools, you can access to the
LR using either “R14” or “LR.” Both upper and lower case (e.g., “r14” or “Ir””) can be used.

Although the return address in the Cortex-MO/MO+ processor is always an even address
(bit[0] is zero because smallest instruction are 16-bit and must be half-word aligned), bit
zero of LR is readable and writeable. In the ARMv6-M architecture, some instructions
require bit zero of a function address set to 1 to indicate Thumb state.

R15, Program Counter

R15 is the PC. It is readable and writeable. A read returns the current instruction address
plus four (this is caused by the pipeline nature of the design). Writing to R15 will cause a
branch to take place (but unlike a function call, the LR does not get updated).

In the ARM assembler, you can access the PC using either “R15” or “PC,” in either upper
or lower case (e.g., “r15” or “pc”). Instruction addresses in the Cortex-M0/M0+ processor
must be aligned to half-word address, which means the actual bit zero of the PC should be
zero all the time. However, when attempting to carry out a branch using the branch
instructions (BX or BLX), the LSB of the PC should be set tol.! This is to indicate that

! Not required when a move (MOV) or add (ADD) instruction is used to modity the PC.
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the branch target is a Thumb program region. Otherwise, it can imply an attempt to switch
the processor to ARM state (depending on the instruction used), which is not supported
and will cause a fault exception.

XPSR, Combined Program Status Register

The combined Program Status Register (PSR) provides information about program
execution and the ALU flags. It consists of the following three PSRs (Figure 4 4):

* Application PSR (APSR),

* Interrupt PSR (IPSR), and
* Execution PSR (EPSR)

bit it

3 28 24| 16 6 0

(CToTT
APSR ;NiZ‘C vl Reserved

31 i B _24[ N w[ o 8| 5 0
IPSR { Reserved ISR Number |

n 24 _ 16| 8| 0
EPSR . Reserved T Reserved

h—

Figure 4.4

Application PSR (APSR), Interrupt PSR (IPSR), and Execution PSR (EPSR).

The APSR contains the ALU flags: N (negative flag), Z (zero flag), C (carry or borrow ’
flag), and V (overflow flag). These bits are at the top 4 bits of the APSR. The common use
of these flags is to control conditional branches.

The IPSR contains the current executing ISR (Interrupt Service Routine) number. Each
exception on the Cortex-M0/MO0+ processor has a unique associated ISR number (exception
type). This is useful for identifying the current interrupt type during debugging and allows an
exception handler that is shared by several exceptions to know which exception it is serving.

The EPSR on the Cortex-M0/M0+ processor contains the T bit which indicates that the
processor is in the Thumb state. On the Cortex-M0/M0+ processor, this bit is normally set
to 1 because the Cortex-M processors only support Thumb state. If this bit is cleared, a
HardFault exception will be generated in the next instruction execution.

These three registers can be accessed as one register called XPSR. For example, when an
interrupt takes place, the xPSR is one of the registers that is stored on to the stack memory
automatically and restored automatically after returning from an exception. During the
stack store and restore, the xPSR is treated as one register (Figure 4.5).
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bit

bit |
| 28 24) 16| 9| lb 0
I
xPSR ‘N z ‘ C‘V‘Hnnanud T‘ Roserved | 1SR Number |
L1 |
Figure 4.5
xPSR,

Direct access to the PSRs is only possible through special register access instructions.
However, the value of the APSR can affect conditional branches and the carry flag in the

APSR can also be used in some data processing instructions.

PRIMASK—Interrupt Mask Special Register

The PRIMASK register is a 1-bit wide interrupt mask register. When set, it blocks all
interrupts apart from the Non-Maskable Interrupt (NMI) and the HardFault exception.
Effectively it raises the current interrupt priority level to O which is the highest value for a
programmable exception (Figure 4.6).

bit bit

31
) |
|| |

PRIMASK ‘ Reserved l

PRIMASK T

Figure 4.6
PRIMASK.

The PRIMASK register can be accessed using special register access instructions (MSR,
MRS) as well as using an instruction called CPS. This is commonly used for handling

time critical routines.

CONTROL—Special Register

As mentioned earlier, there are two stack pointers in the Cortex-MO and Cortex-MO-+
processors. The stack pointer selection is determined by the processor mode as well as the
configuration of the CONTROL register (bit 1—SPSEL). The Thread mode of the
Cortex-MO-+ processor can either be privileged or unprivileged, and this is also controlled

by CONTROL (bit 0—nPRIV) (Figure 4.7).

bit

bit
10

3
CONTROL [ Reserved |l l }

SPSEL (Stack definition) —T T
nPRIV (not Privileged) / Reserved !
Figure 4.7
CONTROL.
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After reset, the MSP is used, but can be switched to the PSP in Thread mode (when not

running an exception handler) by setting bit[1] in the CONTROL register. During running

of an exception handler (when the processor is in handler mode), only the MSP is used,
CONTROL, register can only be

and the CONTROL register reads as zero. The bit[1] of
changed in Thread mode, or via the exception entrance and return mechanism

(Figure 4.8),
Thumb State

Handler Mode Exception
Execuling exception handler ralurn

CONTROL[1] =0
MSP selected

Exception
request

-

Thread Mode
Executing normal code

CONTROL[1] =0 CONTROL[1] = 1

Start —
PSP selected

MSP selected

i 4

Figure 4.8
Stack pointer selection.

Bit[0] of the CONTROL register is for selecting between Privileged and Unprivileged

states during Thread mode. Some of the Cortex-MO0+ devices and all Cortex-MO
bit is always

processor-based devices do not support unprivileged state and therefore this

zero (Figure 4.9).

4 Thumb State D\
Exception Handler Mode Exception
request Executing exception handler return

Always Privileged

Thread Mode
Executing normal code

CONTROL[0] =0 CONTROLI[0] = 1

Start —
Privileged Unprivileged

4

Figure 4.9
Privileged state selection.
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Access of Registers and Special Registers

In C/C++ programming or any other high level languages, the registers in the register
bank (RO—R12) can be utilized by the compiler automatically. In most cases. you do not
need to worry about which registers being used. unless you are interfacing assembly code
and C/C++ code (such mixed language development will be cover in Chapter 21).

The other special registers need to be accessed using some special instructions (MRS and
MSR). The CMSIS-CORE provides a number of APIs for such usages. However. please note
that some of these special registers cannot be accessed or changed by software (Table 4.1).

Table 4.1: Access limitations to special registers

Privileged Unprivileged
APSR R'W R/W
EPSR No access (T bit read as zero) No access (T bit read as zero)
IPSR Read only Read only
PRIMASK R/W Read only
CONTROL R/W Read only

4.2.3 Behaviors of the APSR

Data processing instructions can affect destination registers as well as the APSR which is
commonly known as ALU status flags in other processor architectures. The APSR is
essential for controlling conditional branches. In addition, one of the APSR flags, the C
(Carry) bit, can also be used in add and subtract operations.

There are four APSR flags in the Cortex-MO ad Cortex-M0+ processors (Table 4.2).

Table 4.2: ALU flags on the Cortex"-M0 and Cortex-M0+ processors

Flag SR

N (bit 31) Set to bit[31] of the result of the executed instruction. When it is “1,” the result has a
negative value (when interpreted as a signed integer). When it is “0,” the result has a
positive value or equal zero.

Z (bit 30) Set to “1” if the result of the executed instruction is zero. It can also be set to “1” aftera
compare instruction is executed if the two values are the same.

C (bit 29) Carry flag of the result. For unsigned addition, this bit is set to “1” if an unsigned
overflow occurred. For unsigned subtract operations, this bit is the inverse of the borrow
output status.

V (bit 28) Overflow of the result. For signed addition or subtraction, this bit is set to “17 if a signed
overflow occurred.

A few examples of the ALU flag results are as given in Table 4.3.
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Oporation :
Fﬁ‘;ﬁbnﬁnno + Ox 70000000 Result OxE0000000, N 1,2 -0,¢ -0,V=1
0x90000000 * Ox 00000000 fReeult 0x 20000000, N 0,6Z= n,r_ 1, V=1
OxB0000000 4 axANO0DO00 Result Ox00000000, N 0,2=1,¢C 1,V=1
ox000017234 Ox00001000 Result 0x00000234, N - 0,2=0C=1,Vs= 0
0x00000004 Ox 00000005 Result — OxFFFFFFEF, N = 1,Z=0,C ) 0,V=20
OxFFFFFFEE = OXFFEFRFFC Result 0x00000003, N e ()L 0,C=1V=0
| OxBO00000S 0xBO00000A Result —thOUﬂOOUOI.hl--n,I =0,C=1,V=0

f 0x 70000000 0xF0000000 neﬂﬂt--nxaunnnnon,N =1,2=0,C 0,v=1 .

0xADDO0D00 Remﬂl—-DxUOUOUOOO,N =0,Z=1,C= 1,V=10 _J

| OxADODOOOD

In the Cortex-MO and Cortex-M0+ processors, almost all of the data processing instructions
modify the APSR: however, some of these instructions do not update the V flag or the C flag.
For example, the MULS (multiply) instruction only changes the N flag and the Z flag.

d for handling data that is larger than 32-bits. For example, we

The ALU flags can be use
ration into two 32-bit additions. The

can perform a 64-bit addition by splitting the ope
pseudo form of the operation can be written as follows:

/ Calculating Z = X + Y, where X, Y and Z are all 64-bit
2031:0] = X[31:0] + Y[31:0]; // Calculate lower word addition,
// carry flag get updated

7163:32] = X[63:32] +Y[63:32] +Carry: // Calculate upper word addition.

An example of carry out such 64-bit add operation in assembly code can be found in

Chapter 6 (Section 6.5.1).
The other common usage of APSR flag is to control branching. More on this will be covered
in Chapter 5 (Section 5.4.8), where the details of the condition branch instruction will be

covered.

4.3 Memory System

4.3.1 Overview

All ARM® Cortex®-M processors have a 4 GB of memory address space. The memory
space is architecturally defined into a number of regions, with each region having a
recommended usage to help software porting between different devices (Figure 4.10).

The Cortex-MO and Cortex-M0+ processors contain a number of built-in components like
the NVIC (the interrupt controller) and a number of debug components. These are located in
ﬁxcfsl memory locations within the system region of the memory map. As a result, all the
devices based on the Cortex-M processors have the same programming model for interrupt
control and debug. This makes it convenient for software porting as well as helping debug
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Figure 4.10
Memory map.

tool vendors to develop debug solutions for the Cortex-MO-based microcontroller or System-
on-Chip (SoC) products.

The memory space is shared between instruction memory, data memory, peripherals
processor’s built-in peripherals (e.g., the interrupt controller), and processor’s debug

bug components are not visible to the software running on

f view this is implementation defined, and existing
Cortex-MO and Cortex-MO-+ processors are designed to make the debug components to be
visible only from debugger). This is different from Cortex-M3, Cortex-M4, and Cortex-M7

processors, where privileged codes can access the debug components.

components. However, the de
the processor (from architecture point O

In most cases, the memories connected to the Cortex-M processors are 32-bits, but it is also
possible to connect memory of different data widths to a Cortex-M processor with suitable
ry system in Cortex-M processors supports memory

memory interface hardware. The memo
transfers of different sizes such as byte (8-bit), half word (16-bit), and word (32-bit). The

Cortex-MO and Cortex-MO-+ processor designs can be configured to support either little
endian or big endian memory systems, but cannot switch from one to another inan
implemented design.

Since the memory system and peripherals connected to the Cortex-MO or Cortex-MO+
processors are developed by microcontroller vendors or SoC designers, different memory
sizes and memory types can be found in different Cortex-M0/MO--based products.



