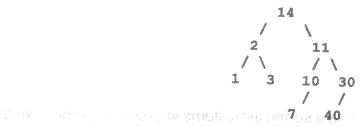


Code No.: 5347/S

FACULTY OF INFORMATICS B.E. 2/4 (IT) I Semester (Suppl.) Examination, July 2012 DATA STRUCTURES

Time: 3 Hours]


[Max. Marks: 75

Note: Answer all questions from Part A and any five questions

PART - A

(25 Marks)

- 1. Suppose a program is written to add m matrices of size $n \times n$. Assuming time complexity of adding two matrices is $O(n^2)$. What is the complexity of whole program?
- 2. What is the advantage of using array doubling technique, while inserting an element into array list?
- 3. What is the postfix expression for the following infix: $(a + b^*(c a) d)$?
- 4. In circular array representation of Queue, if R points to last element in the Queue and F points to a location before the first element of Queue. How many elements are there in the Queue if maximum size of array is N?
- 5. What is the advantage of using a dummy header in circular linked list?
- 6. Write a function to count the number of elements in a linked list.
- 7. For the following tree, what is the order of nodes visited using an in-order traversal?

8. Suppose that an array a [] represents a max-heap that stores the highest element in location a[1], and location a[0] is empty. Give the possible positions for third highest element.

Code No.: 5347/S

- 9. For insertion sort, what arrangement of the input data will cause the worst-case performance? The best-case performance?
- 10. Suppose you have an order mB-tree. How many levels are required at minimum to hold 3000 keys?

(50 Marks) PART-B

11. a) Show the best and worst case step count analysis for the following function (insertion into sorted array)

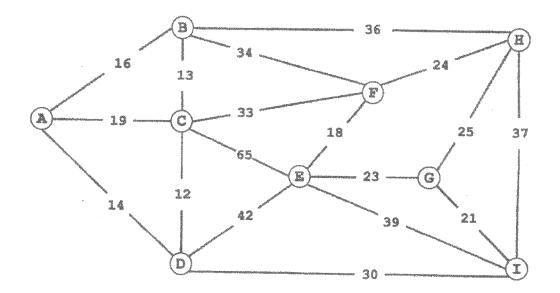
```
Void insert (T a[], int & n, Const T & n)
{
      int i;
      for (i = n - 1; i > 0 & x < a [i]; i - -)
      a[i + 1] = a[i];
       a[i + 1] = X;
       n ++:
```

- b) Suppose a sparse matrix is represented by using arrays. Write efficient method for transposing the sparse matrix.
- 12. a) Suppose a stack is implemented with operation push (), pop (), is empty () and make empty (). Use these operations to implement following operation in a stack.

Reverse (stack s, int n); // reverses top n elements of stack.

- b) Write C++ code to implement following operations on queue (use linked representation).
 - i) Insert
 - ii) Delete
 - iii) Display
- 13. A singly linked list is used to store a sorted list to items in ascending order. Write C++ code to implement following function to merge lists m and n into list r without allocating additional nodes.

Void merge (List<T>&m, List<T>&n, List<T>&r).



Code No.: 5347/S

- 14. a) Write C++ code to delete a node from a binary search tree.
 - b) Apply depth-first and breadth first searches to the complete graph on four vertices. List the vertices in the order they would be visited.
- 15. a) Given the following list of numbers.

18 15 2 9 36 54 5 16 7 73 8
Use the Quick sort algorithm to sort them. Show different passes indicating the pivot and the partitions formed.

- b) Compare the worst case height of red-black tree with n nodes and that of AVL tree with same number of nodes.
- 16. Consider the following weighted graph, give the list of edges in the Minimum Spanning Tree in the order that Kruskal's algorithm inserts them.

- 17. Write short notes on:
 - a) Secure hash functions.
 - b) Splay trees.
 - c) Asymptotic notation.

3