\qquad

MCA (Sem. - $3^{\text {rd }}$)
 DATASTRUCTURES
 SUBJECT CODE: MCA-302

Paper ID : [B0112]

[Note : Please fill subject code and paper ID on OMR]

Time : 03 Hours

Maximum Marks : 60

Instruction to Candidates:

1) Attempt any one question from each Sections - A, B, C \& D.
2) Section - E is Compulsory.
3) Use of Non-programmable Scientific Calculator is allowed.

Section - A

$$
(1 \times 10=10)
$$

Q1) Write a function that accepts two singly linked lists L_{1} and L_{2}. It should print L_{3}, where L_{3} is a singly linked list and $L_{3}=L_{1} \cup L_{2}$.

Q2) Using manual transformation, write the following expressions received after conversions:
(a) + - * PQRS
(Convert to Infix)
(b) $\mathrm{AB} * \mathrm{C} / \mathrm{D}-$
(Convert to Infix)
(c) $(\mathrm{A}-\mathrm{B}) / \mathrm{C} * \mathrm{D} * \mathrm{~F}-\mathrm{C} * \mathrm{~A}+\mathrm{D}!\mathrm{G}$
(Convert to Prefix)
(! Denotes Exponential Operator)

Section-B

$$
(1 \times 10=10)
$$

Q3) What are the various operations possible on a doubly link list. Explain with the algorithm.

Q4) Formulate an AVL tree from the following list of numbers:

$$
22,16,9,12,5,11,13,18,23,12,26,8,27,23,29
$$

Now delete 12, 29 from the AVL tree above one after another showing each step.

Q5) Draw a directed graph with seven vertices and nine edges. Exactly one of the edges should be a loop, and do not have any multiple edges. Denote it using a linked representation.

Q6) Draw an undirected graph with five edges and four vertices. The vertices should be called v_{1}, v_{2}, v_{3} and v_{4} and there must be a path of length three from v_{1} to v_{4}. Draw an adjacency matrix for the graph.

Section - D

$$
(1 \times 10=10)
$$

Q7) Suppose a sequence of numbers is given like: $23,17,25,81,55,13,58,44$. How this numbers will be sorted in Insertion Sort \& Radix sort. What will be the complexity of each sort for the above sequence?

Q8) What is a binary search tree? How is it represented in memory? Explain various application of BST.

Section-E

$(10 \times 2=20)$
Q9)
a) What is the advantage of using circular linked list?
b) What is the shortcoming of binary search tree?
c) What do you understand by the time and space complexity of any algorithm?
d) What is the complexity of merge sort?
e) What is a top pointer of stack?
f) What is a directed graph?
g) What is the difference between sequential and linked representations?
h) What is hashing as a technique used for?
i) To compute shortest distance from Jullundhar to Mumbai, which algorithm will be most suitable? The problem statement will be represented using which data structure?
j) State a few applications of queues?

$$
\theta \otimes
$$

