	Utech
Name:	
Roll No.:	A thomas of Examining and Explicat
Invigilator's Signature :	

CS/B.Tech(New)/CSE/IT/SEM-4/M-401/2013 2013

MATHEMATICS-III

Time Allotted: 3 Hours Full Marks: 70

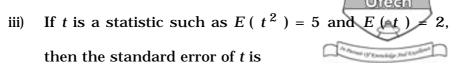
The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)						
1.	Cho	ose t	the correct alternatives	for ai	ny ten of the following: $10 \times 1 = 10$	
	i)	The	number of generations	of ar	n infinite cyclic group is	
		a)	1	b)	2	
		c)	infinite	d)	none of these.	

The standard deviation of a sample mean for SRSWR is ii)


a)
$$\sigma^2/n$$

b)
$$\sigma/\sqrt{n}$$

c)
$$\sigma/n$$

4102

CS/B.Tech(New)/CSE/IT/SEM-4/M-401/2013

a) 0

b) 1

c) 2

- d) none of these.
- iv) If the exponential distribution is given by the probability density function $f(x) = e^{-x}$, $0 < x < \infty$, then the mean of the distribution is
 - a) 1

b) 3

c) $\frac{1}{3}$

- d) none of these.
- v) The probability of an event A is $\frac{1}{3}$, that of A+B is $\frac{1}{2}$ and that of AB is $\frac{1}{4}$. Then the probability of B is
 - a) $\frac{1}{12}$

b) $\frac{5}{12}$

c) $\frac{1}{6}$

- d) none of these.
- vi) Which one of the following sets forms a group under usual multiplication of complex numbers ?
 - a) $\{1, i\}$

- b) { 1, ω , ω^2 }
- c) $\{1, \omega^2\}$
- d) $\{1, \infty\}$.

vii) The distribution for which the mean and variance are equal is

- a) Poisson
- b) normal
- c) binomial
- d) exponential.

viii) In a Binomial (n, p) distribution, if its mean and variance are 2 and 4/3 respectivity, then the values of n and p are

a) 8, $\frac{1}{4}$

b) $6, \frac{1}{3}$

c) 4, $\frac{1}{2}$

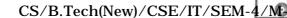
d) none of these.

ix) If G is a connected planar graph with n vertices, e edges and f faces, then n – e + f = 2. This statement is

a) True

b) False.

x) The mean of Binomial variate is


a) np

b) np(1-p)

c) \sqrt{np}

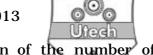
d) none of these.

B.Tech(New)/CSE/IT/SEM-4/M-401/2013								
xi)	Kuratowski's graph is a							
	a)	planar graph	b)	regular graph				
	c)	tree	d)	none of these.				
xii)	The order of the dihedral group D_4 is							
	a)	4	b)	6				
	c)	8	d)	64.				
xiii)	Every finite integral domain is a field. This statement is							
	a)	True	b)	False.				
xiv)	If A and B are two subgroups of a group G , then which							
	of the following is always a subgroup of G ?							
	a)	$A \cup B$	b)	G - A				
	c)	G-B	d)	$A \cap B$.				
xv)	The symmetric group S_3 has							
	a)	6 elements	b)	8 elements				
	c)	9 elements	d)	none of these.				

(Short Answer Type Questions)

Answer any three of the following.

- 2. Let (Q, +) be the additive group of rational numbers and (Q^+, \cdot) be the multiplicative group of positive rational numbers. Are these two groups isomorphic? Justify your answer.
- 3. Prove Baye's theorem for repeated trials.
- 4. Examine whether faction |x| in (-1, 1) and zero elsewhere is a density function.
- 5. Show that a connected graph is Eulerian if and only if each of its vertices is of even degree.
- 6. Show that a field does not contain any zero divisor.


GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Prove that a planar graph with n vertices, e number of edges and k number of components determines f number of regions, where f = e n + k + 1.
 - b) Let \bar{X} be the sample mean of samples of size n drawn at random from a population which is normally distributed with mean μ and variance σ^2 . Find the standard error of the statistic \bar{X} .

CS/B.Tech(New)/CSE/IT/SEM-4/M-401/2013

- 8. a) Find the mathematical expectation of the number of points obtained in a single throw of an unbiased die. 5
 - b) Define Poisson distribution and find its mean and variance.
 - c) Let f be a ring homomorphism from the ring Z of integers into itself such that f(1) = 1. Determine the homomorphism f.
- 9. a) Show that any simple connected planar graph with n vertices ($n \ge 3$) has at most (3n 6) edges. 7
 - b) Prove that every nontrivial subgroup of the additive group *Z* of integers is cyctic.
 - c) Let R and S be two rings and $f: R \to S$ be a ring homomorphism. Show that kernel of f is a subring of R.
- 10. a) Determine the mean and variance of exponential distribution.
 - b) Show that every cyclic group is commutative. 4
 - c) Let H be a normal subgroup of a group G and G/H be the set of all cosets of H in G. Show that G/H forms a group under the composition

$$(aH) \cdot (bH) = (ab) H$$
 for all $a, b \in G$.

4102

CS/B.Tech(New)/CSE/IT/SEM-4/M 401/2013

- 11. a) The probability density function of a random variable X is assumed to be of the form $f(x) = cx^{\alpha}$, $0 \le x \le 1$ for some number and constant c. If $\{X_1, X_2, ..., X_n\}$ is a random sample of size n, find the maximum likelihood estimate of α .
 - b) Let S' be the set defined by $S' = \{ z \in C : |z| = 1 \}$, where C is the set of all complex numbers. Show that S' forms a commutative group under usual multiplication of complex numbers.
 - c) Let R be the additive group of real numbers and C^* be the multiplicative group of nonzero complex numbers. If $f = R \to C^*$ is a group homomorphism defined by $f(x) = e^{2\pi i x}$ for all $x \in R$, find the kernel of f.

4102 7 [Turn over