

CS/ B.Tech(New)/ CSE/ IT/ SEM-4/ M-401/ 2013 2013

 MATHEMATICS-IIITime Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The number of generations of an infinite cyclic group is
a) 1
b) 2
c) infinite
d) none of these.
ii) The standard deviation of a sample mean for SRSWR is
a) σ^{2} / n
b) σ / \sqrt{n}
c) σ / n
d) n.

CS/B.Tech(New)/CSE/IT/SEM-4/M-401/2013
iii) If t is a statistic such as $E\left(t^{2}\right)=5$ and $E(\Omega t) \neq 2$, then the standard error of t is
a) 0
b) 1
c) 2
d) none of these.
iv) If the exponential distribution is given by the probability density function $f(x)=e^{-x}, 0<x<\infty$, then the mean of the distribution is
a) 1
b) 3
c) $\frac{1}{3}$
d) none of these.
v) The probability of an event A is $\frac{1}{3}$, that of $A+B$ is $\frac{1}{2}$ and that of $A B$ is $\frac{1}{4}$. Then the probability of B is
a) $\frac{1}{12}$
b) $\frac{5}{12}$
c) $\frac{1}{6}$
d) none of these.
vi) Which one of the following sets forms a group under usual multiplication of complex numbers?
a) $\{1, i\}$
b) $\left\{1, \omega, \omega^{2}\right\}$
c) $\left\{1, \omega^{2}\right\}$
d) $\{1, \omega\}$. equal is
a) Poisson
b) normal
c) binomial
d) exponential.
viii) In a Binomial (n, p) distribution, if its mean and variance are 2 and $4 / 3$ respectivity, then the values of n and p are
a) $8, \frac{1}{4}$
b) $6, \frac{1}{3}$
c) $4, \frac{1}{2}$
d) none of these.
ix) If G is a connected planar graph with n vertices, e edges and f faces, then $n-e+f=2$. This statement is
a) True
b) False.
x) The mean of Binomial variate is
a) $n p$
b) $n p(1-p)$
c) $\sqrt{n p}$
d) none of these.

CS/B.Tech(New)/CSE/IT/SEM-4/M-401/2013
xi) Kuratowski's graph is a
a) planar graph
b) regular graph
c) tree
d) none of these.
xii) The order of the dihedral group D_{4} is
a) 4
b) 6
c) 8
d) 64 .
xiii) Every finite integral domain is a field. This statement is
a) True
b) False.
xiv) If A and B are two subgroups of a group G, then which of the following is always a subgroup of G ?
a) $A \cup B$
b) $G-A$
c) $\quad G-B$
d) $A \cap B$.
xv) The symmetric group S_{3} has
a) 6 elements
b) 8 elements
c) 9 elements
d) none of these.

2. Let $(\Omega,+)$ be the additive group of rational numbers and $\left(\Omega^{+}\right.$, .) be the multiplicative group of positive rational numbers. Are these two groups isomorphic ? Justify your answer.
3. Prove Baye's theorem for repeated trials.
4. Examine whether faction $|x|$ in ($-1,1$) and zero elsewhere is a density function.
5. Show that a connected graph is Eulerian if and only if each of its vertices is of even degree.
6. Show that a field does not contain any zero divisor

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. a) Prove that a planar graph with n vertices, e number of edges and k number of components determines f number of regions, where $f=e-n+k+1$.
b) Let \bar{X} be the sample mean of samples of size n drawn at random from a population which is normally distributed with mean μ and variance σ^{2}. Find the standard error of the statistic \bar{X}.

CS/B.Tech(New)/CSE/IT/SEM-4/M-401/2013
8. a) Find the mathematical expectation of the number of points obtained in a single throw of an unbiased die. 5
b) Define Poisson distribution and find its mean and variance.
c) Let f be a ring homomorphism from the ring Z of integers into itself such that $f(1)=1$. Determine the homomorphism f.
9. a) Show that any simple connected planar graph with n vertices ($n \geq 3$) has at most ($3 n-6$) edges.
b) Prove that every nontrivial subgroup of the additive group Z of integers is cyctic.
c) Let R and S be two rings and $f: R \rightarrow S$ be a ring homomorphism. Show that kernel of f is a subring of R.
10. a) Determine the mean and variance of exponential distribution.
b) Show that every cyclic group is commutative.
c) Let H be a normal subgroup of a group G and G / H be the set of all cosets of H in G. Show that G / H forms a group under the composition

$$
\begin{equation*}
(a H) \cdot(b H)=(a b) H \text { for all } a, b \in G \tag{5}
\end{equation*}
$$

11. a) The probability density function of a random variable X is assumed to be of the form $f(x)=c x^{0,0} \leq x \leq 1$ for some number and constant c. If $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a random sample of size n, find the maximum likelihood estimate of α.
b) Let S^{\prime} be the set defined by $S^{\prime}=\{z \in C:|z|=1\}$, where C is the set of all complex numbers. Show that S^{\prime} forms a commutitive group under usual multiplication of complex numbers.
c) Let R be the additive group of real numbers and C^{*} be the multiplicative group of nonzero complex numbers. If $f=R \rightarrow C^{*}$ is a group homomorphism defined by $f(x)=e^{2 \pi i x}$ for all $x \in R$, find the kernel of f.
