Code No: **RT4104A**

R13

Set No. 1

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **OPTICAL COMMUNICATION**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B **** PART-<u>A</u>(22 Marks) Write the expression for refractive index in graded index fibers and step index 1. a) [4] b) Give the relation between numerical aperture of Skew rays and meridional rays. [4] What is group delay? [3] c) Define and explain about population inversion? [4] What are the requirements of good connectors? e) [3] Explain briefly about link power budget analysis. f) [4] PART-B(3x16 = 48 Marks)With a neat diagram, explain the working principle of analog and digital optical 2. a) communication systems. [8] Compute the V-number and number of modes supported by a fiber with $n_1 = 1.48$ and $n_2 = 1.46$; core radius 25 µm and operating wavelength is 1300 nm. [8] 3. a) Write short notes on following (i) Mode field diameter (ii) Core-cladding losses. [8] b) What are different types of bending losses in optical fiber? [8] 4. Draw the structure of edge emitting LEDs and explain. [8] a) What is known as quantum limit? A digital fiber optic link operating at 850 nm requires a maximum BER of 10*9. Find the minimum incidental optical power Po to achieve this BER at a data rate of 10 Mb/s for a simple binary level signaling scheme. (ry: 1), [1/r : B/2]. [8] a) Explain the various measures of efficiency in PIN photodiode and briefly explain the working principle of PIN diode. [8] Draw and explain the output patterns of source to fiber power launching of LED. [8] Explain digital signal transmission in optical detectors. [8] 6. a) Differentiate between the photo diode parameters, 'Quantum limit' and 'Dark current'. [8] Describe the eye pattern analysis for assessing the performance of a digital 7. a) fiber optical link. [8] b) Explain NRZ and RZ line codes in optical link with an example. [8]

R13

Code No: RT4104A

Set No. 2

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 OPTICAL COMMUNICATION

(Electronics and Communication Engineering)							
Time: 3 hours Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ******							
PART-A(22 Marks)							
1.	a)b)c)d)e)	Define the cut off wave length. State the Goos-Haenchen effect. Explain about Rayleigh scattering. What is the principle of operation of LASER? What is meant by splicing? And what are the basic requirements of fiber	[3] [4] [4] [3]				
	f)	splicing. What are the connectors? Write different types of connectors.	[4] [4]				
		DADT D(2::14 49 M:::1:)					
2.	a) b)		[8]				
3.	a) b)	Compare Single mode fibers and Graded index fibers. Explain the requirements for fiber materials. Explain about linear scattering losses in optical fiber.	[8] [8]				
4.		What is meant by 'fiber splicing'? Explain various types of fiber splicing techniques and fiber connectors	[16]				
5.	a) b)	Explain the working of Avalanche photodiode. The quantum efficiency of an In GaAs PIN diode is 80% in the wave length range between 1300nm and 1600nm. Compute the range of responsivity of the PIN diode in the specified wavelength range.	[8] [8]				
6.	a) b)	What is link power budget? Discuss with examples. Explain about the frequency chirping and its effects.	[8] [8]				
7.	a) b)	Explain the method of measurement of chromatic dispersion in optical fibers Discuss various line codes which are used in optical links.	[8] [8]				

R13

Code No: RT4104A

Set No. 3

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **OPTICAL COMMUNICATION**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ****

PART-A(22 Marks)

1.	a)	Write and explain about Snell's law.	[4]
	b)	What are the conditions for total internal reflection?	[3]
	c)	What are the techniques used in splicing?	[4]
	d)	What is meant by hetero junction? List out the advantages of hetero junction.	[4]
	e)	Give the advantages of Pindiode.	[3]
	f)	Define the Model noise and Model partition noise.	[4]
		$\underline{\mathbf{PART-B}}(3x16 = 48 \ Marks)$	
2.	a)	Compare Single mode fibers and Graded index fibers. Explain the requirements for fiber materials.	[8]
	b)	How many types of rays can propagate in a optical fiber? Explain.	[8]
3.	a)	Explain the pulse broadening due to inter model dispersion in different types of optical fibers.	[8]
	b)	Explain the intra modal dispersion effect in optical fiber.	[8]
4.	a)	Explain the resonant frequencies of a Laser Diode.	[8]
	b)	Explain the function of quantum efficiency.	[8]
5.	a)	In a 100-ns pulse, 6x 10 ⁶ photons at a wavelength of 1300nm fall on an In GaAsPhoto detector on the average, 5.4 x 10 ⁶ electron-hole (e-h) pairs are generated. Find the quantum efficiency.	[8]
	b)	Explain why the mechanical Misalignment problem occurs when fibers are joint.	[8]
6.	a)	Discuss about the Point to Point Fiber Optic Link and its characteristics with an example	[8]
	b)	How the rise-time budget is required in optical communication system? And	
		explain the rise-time-budget.	[8]
7.	a)	What are the advantages and the necessity of WDM?	[8]
	b)	Explain how the attenuation does and dispersion is measured in optical communication.	[8]

R13

Code No: RT4104A

Set No. 4

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **OPTICAL COMMUNICATION**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B
>
> *****

PART-A(22 Marks)

1.	a) b)	Define relative refractive index difference. What is the necessity of cladding in optical fibers?	[3] [3]
	c)	A step index fiber has the normalized frequency of 26.6 at 1300nm. If the core radius is $25\mu m$, find the numerical aperture.	[4]
	d)	Define Internal-Quantum efficiency. And what is the quantum efficiency of photo detector.	[4]
	e)	Derive the relationship between powers launching versus wavelength.	[4]
	f)	What are the different error sources in fiber optical receiver?	[4]
		$\mathbf{PART} - \mathbf{B}(3x16 = 48 \ Marks)$	
2.	a)	What are the various elements of Optical communication system? Explain each element in brief?	[8]
	b)	Derive the Numerical aperture of step index fiber (SIF) by suing Snell's law.	[8]
3.		Explain all four types of distortion mechanisms in optical communication.	[16]
4.	a) b)	Write different types of splicing techniques. Draw the structure of surface emitting LEDs and explain the radiation pattern.	[8] [8]
	U)	Draw the structure of surface enfitting LEDs and explain the fadiation pattern.	[o]
5.	a)	What is Equilibrium numerical aperture?	[8]
	b)	A GaAs optical source with a refractive index of 3.6 is coupled to a silica fiber that has a refractive index of 1.48. If the fiber end and the source are in	
		close physical contact, find Fresnel reflection at interface and Power loss (dB).	[8]
6.	a) b)	Define diffusion length, carrier lifetime and absorption coefficient. Derive an expression for the total system rise time budget in terms of transmitter fiber and receiver rise time.	[8]
			[8]
7.	a)	Explain the need of WDM in OC. And explain the function of WDM	[8]
	b)	Explain the technique of insertion –loss method to measure attenuation.	[8]