
[1]

BE-301 PTO

Total No. of Questions :5] [Total No. of Printed Pages :2

Roll No ..................................

BE - 301

B.E. III Semester Examination, December 2014

Mathematics - II
(Common for all Branches)

Time : Three Hours

Maximum Marks : 70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal

choice.

ii) All parts of each question are to be attempted at one place.

iii)All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part

C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.

iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

1. a) Write the Euler’s formula to find Fourier series?

b) Define Fourier transform and give the shifting property for Fourier transform?

c) Find the Fourier sine transform of
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d) Find the Fourier series for the periodic function f(x) defined by
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Find a half range cosine series for
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Unit - II

2. a) Find { }4 3 33 2 4  2sin 5 3cos 2t
L t t e t t

−− + − + .

b) Explain first shifting property of Laplace transform.

c) Evaluate 
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Using convolution theorem evaluate

( )( )

2
1

2 2 2 2

s
L

s a s b

−
  
 

+ +  

http://www.rgpvonline.com

http://www.rgpvonline.com



[2]

BE-301 PTO

Unit - III

3. a) Write the conditions for series solution of differential equation?

b) Explain the regular and irregular singular points?

c) Solve ( )
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d) Solve 
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OR

Solve ( )
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Unit - IV

4. a) Solve tan tan tanp x q y  z+ =

b) Solve ( )2 2 2 2 2 0y z x p xy q zx+ − − + =

c) Form the partial differential equation from the following relation ( ) ( )Z f x iy  F x iy= + + −

Where f and F are arbitrary functions.

d) Solve by Charpit’s method

px + qy = pq

OR

Solve pt – qs = q3

Unit - V

5. a) If r = xi + yj + zk

Then show that grad ˆr r=

b) Find a unit normal vector normal to the surface 2 2
x y zφ = + −  at the point (1, 2, 5)

c) If vector ( ) ( ) ( )3 2 9F x y i y z j x z k= + + − + +  is a solenoidal vector, then find the value of a?

d) Evaluate .
C

F dr∫  where sin cosx x
F e y i e  y j= + and the vertices of rectangle C are (0, 0) (1, 0)

(1, π/2) (0, π/2)

OR

Evaluate ˆ.
S

A n d s∫ ∫  where A = 18zi – 12j + 3yk and S is the part of the

plane 2x + 3y + 6z = 12.
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