<u> </u>	 	

COLLEGE OF ENGINEERING, ANNA UNIVERSITY END SEMESTER EXAMINATIONS – April/May 2011 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Fourth Semester

EC281 Digital Electronics and System Design Regulation 2004

Time: 3 hours

Max marks:100

Part A

(10x2=20 marks)

- 1 Convert the following Hex decimal number to octal and decimal number 92FF.7F
- 2 Express $a_1a_2 + a_2a_3$ as the product of maxterms
- 3 Explain propagation delay and noise margin
- 4 Draw two input NOR gate using RTL
- 5 Draw the circuit diagram for a full adder using half adder
- 6 Define priority encoder?
- 7 Write down the excitation table for RS flip flop
- 8 Differentiate between Moore and Mealy machine
- 9 Distinguish between synchronous and asynchronous circuit
- 10 Define critical race

Part B

(5x16=80 marks)

- i) State and prove De Morgan's theorem (6 marks)
 - ii) Using a Karnaugh map, determine the MSP and MPS forms of the switching function

 $F = \sum (0,2,5,7,8,9,10,15) + \sum_{\varphi} (3,4)$ (10 marks)

12

۵

- a) i) Draw the circuit diagram and explain the operation of three input NAND gate using CMOS gate (8 marks)
 ii) Draw the circuit diagram of CMOS inverter and explain its
 - Operation (8 marks)

(or)

- b) i) Explain with neat diagram and working of two input NAND gate using DTL (8 marks)
 - ii) Explain with neat circuit diagram the operation of open collector output using TTL families (8 marks)

13

a) i)

ii)

b)

Implement the following switching function using multiplexer $F(w,x,y,z) = \sum (0,7,11,15) + \sum_{\varphi} (2,3,4,13)$ (8 marks) Implement the following function using PLA $F_1(a,b,c) == \sum (0,1,2,3,6,7)$ i.

 $F_2(a,b,c) == \sum (1,3,7)$ ii) (8 marks)

(or)

- Design a combinational circuit that converts a 8421 code to Excess 3 code
- 14

Minimize the following state table a)

NS,Z						
PS	X ₁ X ₂					
	00	01	11	10		
Ā	A,0	C,1	F,0	G,1		
В	B,0	D,1	F,0	H,1		
C	C,0	G,0	H,0	F,1		
D	D,0	A,0	B,0	F,1		
Ē	E,0	B,0	H,0	F,1		
F	F,0	E,1	A,1	H,0		
G	G,0	E,1	F,0	B,1		
Н	H,0	D,1	F,0	A,1		

(or)

- Using T flip flop design a synchronous counter which counts in b) the following sequence: 000,010,011,101,110,111,000,010.....
- What are the different kinds of hazards present in the circuit? a) Explain with an example the elimination of hazards in the circuit

(or)

- b) i) What is fundamental mode operation in asynchronous circuits? Explain (6 marks) ii)
 - The output z of a fundamental mode, two input sequential circuit is to change from 0 to 1 only when x_2 change from 0 to 1 while $x_1 =$ 1. The output is to change from 1 to 0 only when x_1 changes from 1 to 0 while $x_2 = 1$.
 - a) Find a minimum row reduced flow table
 - b) Write a set of hazard free excitation and output equations (10 marks)

15

Q