COLLEGE OF ENGINEERING, ANNA UNIVERSITY
 END SEMESTER EXAMINATIONS - April/May 2011
 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Fourth Semester
 EC281 Digital Electronics and System Design
 Regulation 2004

Time: 3 hours
Max marks:1.00
Part A
(10×2=20 marks)
1 Convert the following Hex decimal number to octal and decimal number 92 FF .7 F
2 Express $a_{1} a_{2}+a_{2} a_{3}$ as the product of maxterms
3 Explain propagation delay and noise margin
4 Draw two input NOR gate using RTL
5 Draw the circuit diagram for a full adder using half adder
6 Define priority encoder?
7 Write down the excitation table for RS flip flop
8 Differentiate between Moore and Mealy machine
9 Distinguish between synchronous and asynchronous circuit
10 . Define critical race
Part B
(5×16=80 marks)
11 i) State and prove De Morgan's theorem
(6 marks)
ii) Using a Karnaugh map, determine the MSP and MPS forms of the switching function

$$
\mathrm{F}=\sum(0,2,5,7,8,9,10,15)+\sum_{\varphi}(3,4)
$$

12 a) i) Draw the circuit diagram and explain the operation of three input NAND gate using CMOS gate
ii) Draw the circuit diagram of CMOS inverter and explain its Operation
b) i) Explain with neat diagram and working of two input NAND gate using DTL
ii) Explain with neat circuit diagram the operation of open coltector output using TTL families
a) i) Implement the following switching function using multiplexer

$$
\left.F(w, x, y, z)=\sum(0,7,11,15)+\sum_{\varphi}(2,3,4,13) \quad \text { (} 8 \text { marks }\right)
$$

ii) Implement the following function using PLA
i. $\quad F_{i}(a, b, c)=\sum(0,1,2,3,6,7)$
ii) $\quad F_{2}(a, b, c)==\sum(1,3,7)$
(8 marks)

(or)

b) Design a combinational circuit that converts a 8421 code to lixeess 3 code
a) Minimize the following state table

NS, Z				
PS	$\mathrm{X}_{1} \mathrm{X}_{2}$			
	00	01	11	10
A	$\mathrm{A}, 0$	$\mathrm{C}, 1$	$\mathrm{~F}, 0$	$\mathrm{G}, 1$
B	$\mathrm{B}, 0$	$\mathrm{D}, 1$	$\mathrm{~F}, 0$	$\mathrm{H}, 1$
C	$\mathrm{C}, 0$	$\mathrm{G}, 0$	$\mathrm{H}, 0$	$\mathrm{~F}, 1$
D	$\mathrm{D}, 0$	$\mathrm{~A}, 0$	$\mathrm{~B}, 0$	$\mathrm{~F}, 1$
E	$\mathrm{E}, 0$	$\mathrm{~B}, 0$	$\mathrm{H}, 0$	$\mathrm{~F}, 1$
F	$\mathrm{F}, 0$	$\mathrm{E}, 1$	$\mathrm{~A}, 1$	$\mathrm{H}, 0$
G	$\mathrm{G}, 0$	$\mathrm{E}, 1$	$\mathrm{~F}, 0$	$\mathrm{~B}, 1$
H	$\mathrm{H}, 0$	$\mathrm{D}, 1$	$\mathrm{~F}, 0$	$\mathrm{~A}, 1$

(or)
b) Using T flip flop design a synchronous counter which counts in the following sequence: $000,010,011,101,110,111,000,010 \ldots \ldots$.
a) What are the different kinds of hazards present in the circuit? Explain with an example the elimination of hazards in the circuit
(or)
b) i) What is fundamental mode operation in asynchronous circuits:" Explain
(6 marks)
ii) The output z of a fundamental mode, two input sequential circuit is to change from 0 to 1 only when x_{2} change from 0 to 1 while $x_{1}=$ 1. The output is to change from 1 to 0 only when x_{1} changes from 1 to 0 while $x_{2}=1$.
a) Find a minimum row reduced flow table
b) Write a set of hazard free excitation and output equations
(10 marks)

