

#### **DSCE Bangalore**

**Department of Electronics & Instrumentation Engineering** 

#### **Control Systems**

#### Mathematical Modeling of Mechanical Systems (Translational and Rotational Mechanical Systems)

## **Basic Types of Mechanical Systems**

- Translational
  - Linear Motion



- Rotational
  - Rotational Motion



#### Basic Elements of Translational Mechanical Systems

**Translational Spring** 



**Translational Mass** 

ii)

i)





iii)



## Mechanical Translational system (mass-spring-dashpot)

- Mass: The Mass is an inertial element
  - Force (F) Acceleration Reaction force

Mass  

$$F(t) = M \frac{dv(t)}{dt}$$

$$F(t) = M \frac{d^2 x(t)}{dt^2}$$

14. S. M. M. M.

#### **Translational Mass**

ii)

- Translational Mass is an inertia element.
- A mechanical system without mass does not exist.
- If a force F is applied to a mass and it is displaced to x meters then the relation b/w force and displacements is given by Newton's law.





#### F=ma

#### **Translational Damper**

- When the viscosity or drag is not negligible in a system, we often model them with the damping force.
- All the materials exhibit the property of damping to some extent.
- If damping in the system is not enough then extra elements (e.g. Dashpot) are added to increase damping.



8/24/2019

#### Common Uses of Dashpots

**Door Stoppers** 



#### **Bridge Suspension**



Vehicle Suspension



**Flyover Suspension** 



8/24/2019

#### • Dashpot (damper) • -----

 The reaction damping force F is approximated by the product of damping f and relative velocity if any.

- 
$$F(t) = f(v_1 - v_2) = fv$$

Viscous damper

$$F(t) = f v(t)$$

$$F(t) = f \frac{dx(t)}{dt}$$

## **Translational Spring**

 A translational spring is a mechanical element that can be deformed by an external force such that the deformation is directly proportional to the force applied to it.





**Circuit Symbols** 

**Translational Spring** 

## **Translational Spring**

• If **F** is the applied force



• Then  $x_1$  is the deformation if  $x_2 = 0$ 



• Or  $(x_1 - x_2)$  is the deformation.

F

• The equation of motion is given as

$$F = k(x_1 - x_2)$$

• Where k is stiffness of spring expressed in N/m

### Spring



- The spring element force equation, in accordance with Hooke's Law is given by:

$$\mathbf{F}_{\mathbf{k}} = \mathbf{K} \left( \mathbf{x}_{\mathbf{c}} - \mathbf{x}_{\mathbf{d}} \right)$$

Spring  

$$\begin{array}{c} & & \\ & & \\ \hline \end{array} \\ F(t) = K \int_{0}^{t} v(\tau) d\tau \qquad F(t) = Kx(t) \\ K \end{array}$$
<sup>8/24/2019</sup>

| Parameter                    | Symbol Used | SI Units           | Other Units                                | <b>Conversion Factors</b>                                                                  |
|------------------------------|-------------|--------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|
| Mass                         | М           | kilogram<br>(kg)   | slug<br>ft/sec <sup>2</sup>                | 1  kg = 1000  g<br>= 2.2046 lb(mass)<br>= 35.274 oz(mass)<br>= 0.06852 slug                |
| Distance                     | у           | meter (m)          | ft<br>in                                   | 1  m = 3.2808  ft = 39.37  in<br>1  in. = 25.4  mm<br>1  ft = 0.3048  m                    |
| Velocity                     | v           | m/sec              | ft/sec<br>in/sec                           |                                                                                            |
| Acceleration                 | а           | m/sec <sup>2</sup> | ft/sec <sup>2</sup><br>in/sec <sup>2</sup> |                                                                                            |
| Force                        | f           | Newton<br>(N)      | pound<br>(lb force)<br>dyne                | 1 N = 0.2248 lb(force)<br>= 3.5969 oz(force)<br>$1 N = 1 kg-m/s^2$<br>$1 dyn = 1 g-cm/s^2$ |
| Spring Constant              | K           | N/m                | lb/ft                                      |                                                                                            |
| Viscous Friction Coefficient | В           | N/m/sec            | lb/ft/sec                                  |                                                                                            |

#### **Basic Translational Mechanical System Properties and Their Units**

Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

| Component                                                                                                                                | Force-velocity                    | Force-displacement               | Impedence<br>$Z_M(s) = F(s)/X(s)$ |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| $ \begin{array}{c} \text{Spring} \\  & \downarrow & x(t) \\ \hline  & 0000 & f(t) \\ \hline  & K \end{array} $                           | $f(t) = K \int_0^t v(\tau) d\tau$ | f(t) = Kx(t)                     | K                                 |
| Viscous damper<br>x(t)<br>$f_v$                                                                                                          | $f(t) = f_v v(t)$                 | $f(t) = f_v \frac{dx(t)}{dt}$    | f <sub>v</sub> s                  |
| $\begin{array}{c} \text{Mass} \\ \hline \end{array} \\ \hline \end{array} \\ x(t) \\ \hline M \\ \hline \end{array} \\ f(t) \end{array}$ | $f(t) = M \frac{dv(t)}{dt}$       | $f(t) = M \frac{d^2 x(t)}{dt^2}$ | Ms <sup>2</sup>                   |

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter),  $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds<sup>2</sup>/meter).

## Steps to Obtain the Transfer Function of Mechanical System.

- The mechanical system requires just one differential equation, called the equation of motion, to describe it.
- First, draw a free-body diagram, placing on the body all forces that act on the body either in the direction of motion or opposite to it.
- **Second**, use Newton's law to form a differential equation of motion by summing the forces and setting the sum equal to zero.
- Finally, assuming zero initial conditions, we take the Laplace transform of the differential equation, separate the variables, and arrive at the transfer function.

#### Example-1: Find the transfer function, X(s)/F(s), of the system.



- First step is to draw the free-body diagram.
- Place on the mass all forces felt by the mass.
- We assume the mass is traveling toward the right. Thus, only the applied force points to the right; all other forces impede the motion and act to oppose it. Hence, the spring, viscous damper, and the force due to acceleration point to the left.
- Second step is to write the differential equation of motion using Newton's law to sum to zero all of the forces shown on the mass.

$$M\frac{d^2x(t)}{dt^2} + f_v\frac{dx(t)}{dt} + Kx(t) = f(t)$$

8/24/2019

#### Example-1: Continue.

• Third step is to take the Laplace transform, assuming zero initial conditions,

$$Ms^{2}X(s) + f_{v}sX(s) + KX(s) = F(s)$$

or 
$$(Ms^2 + f_v s + K)X(s) = F(s)$$

• Finally, solving for the transfer function yields

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{Ms^2 + f_v s + K}$$

Block Diagram  

$$F(s) = \frac{1}{Ms^2 + f_v s + K} = X(s)$$





$$m[s^{2}X(s)-sx(0)-x(0)] + c[sX(s)-x(0)] + kX(s) = F(s).$$

$$\Rightarrow [ms^{2}+cs+k]X(s) = (ms+c)x(0) + mx(0) + F(s).$$

$$\Rightarrow X(s) = (ms+c)x(0) + mx(0) + (\frac{1}{ms^{2}+cs+k}) F(s)$$

$$gue to non-zero initial Due to input conditions 
'FREE RESPONSE' 'FORCED RESPONSE' 'FREE RESPONSE' 'FREE RESPONSE' (ms^{2}+cs+k) F(s).$$

$$\Rightarrow X(s) = (\frac{1}{ms^{2}+cs+k}) F(s).$$

ROTATIONAL SYSTEM: The rotational motion of a body can be defined as the motion of a body about a fixed axis. There are three types of torques resists the rotational motion.

 Inertia Torque: Inertia(J) is the property of an element that stores the kinetic energy of rotational motion. The inertia torque TI is the product of moment of inertia J and angular acceleration α(t).

$$T_I(t) = J\alpha(t) = J\frac{d\omega(t)}{dt} = J\frac{d^2\theta(t)}{dt^2}$$

Where  $\omega(t)$  is the angular velocity and  $\theta(t)$  is the angular angular where  $\omega(t)$  is the angular where  $\omega(t)$  **2. Damping torque:** The damping torque  $T_D(t)$  is the product of damping coefficient B and angular velocity  $\omega$ . Mathematically

$$T_D(t) = B\omega(t) = B\frac{d\theta(t)}{dt}$$

 Spring torque: Spring torque T<sub>θ</sub>(t) is the product of torsional stiffness and angular displacement.
 Unit of 'K' is N-m/rad

$$T_{\theta}(t) = K\theta(t)$$

#### **TORSIONAL SPRINGS**

Consider the torsional spring shown in Figure 3-2 (a), where one end is fixed and a torque  $\tau$  is applied to the other end. The **angular displacement** of the free end is  $\theta$ . The torque T in the torsional spring is

$$T = k_T \theta \tag{3-3}$$

where  $\theta$  is **the angular displacement** and  $k_{\rm T}$  is the **spring constant** for torsional spring and has units of [Torque/angular displacement]=[N-m/rad] in SI units.



Figure 3-2(a) A torque  $\tau$  is applied at one end of torsional spring, and the other<br/>end is fixed; (b) a torque  $\tau$  is applied at one end, and a torque  $\tau$ , in<br/>the opposite direction, is applied at the other end.

#### **Rotational Spring**





#### **Rotational Damper**



Figure 3-4 (a) Translational damper; (b) torsional (or rotational) damper.

#### **Rotational Damper**

#### TORSIONAL DAMPER

For the torsional damper shown in Figure 3-4(b), the torques  $\tau$  applied to the ends of the damper are of equal magnitude, but opposite in direction. The angular velocities of the ends of the damper are  $\dot{\theta}_1$  and  $\dot{\theta}_2$  and they are taken relative to the same frame of reference. The damping torque T that arises in the damper is proportional to the angular velocity differences  $\dot{\theta}_1 - \dot{\theta}_2$  of the ends, or

$$T = b_{\rm T} \left( \dot{\theta}_1 - \dot{\theta}_2 \right) = b_{\rm T} \dot{\theta}$$
(3-6)





| Parameter                    | Symbol<br>Used | SI<br>Units             | Other<br>Units                                                          | Conversion Factors                                                                                                                                                                                                                                        |
|------------------------------|----------------|-------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inertia                      | J              | kg-m <sup>2</sup>       | slug-ft <sup>2</sup><br>lb-ft-sec <sup>2</sup><br>oz-insec <sup>2</sup> | $1 \text{ g-cm} = 1.417 \times 10^{-5} \text{ oz-insec}^{2}$<br>$1 \text{ lb-ft-sec}^{2} = 192 \text{ oz-insec}^{2}$<br>$= 32.2 \text{ lb-ft}^{2}$<br>$1 \text{ oz-insec}^{2} = 386 \text{ oz-in}^{2}$<br>$1 \text{ g-cm-sec}^{2} = 980 \text{ g-cm}^{2}$ |
| Angular Displacement         | T              | Radian                  | Radian                                                                  | $1 \operatorname{rad} = \frac{180}{\pi} = 57.3 \operatorname{deg}$                                                                                                                                                                                        |
| Angular Velocity             | 0              | radian/sec              | radian/sec                                                              | $1 \text{ rpm} = \frac{2\pi}{60}$<br>= 0.1047 rad/sec<br>1 rpm = 6 deg/sec                                                                                                                                                                                |
| Angular Acceleration         | A              | radian/sec <sup>2</sup> | radian/sec <sup>2</sup>                                                 |                                                                                                                                                                                                                                                           |
| Torque                       | Т              | (N-m)<br>dyne-cm        | lb-ft<br>oz-in.                                                         | 1 g-cm = 0.0139 oz-in.<br>1 lb-ft = 192 oz-in.<br>1 oz-in. = 0.00521 lb-ft                                                                                                                                                                                |
| Spring Constant              | K              | N-m/rad                 | ft-lb/rad                                                               |                                                                                                                                                                                                                                                           |
| Viscous Friction Coefficient | В              | N-m/rad/sec             | ft-lb/rad/sec                                                           |                                                                                                                                                                                                                                                           |
| Energy                       | Q              | J (joules)              | Btu<br>Calorie                                                          | 1 J = 1 N-m<br>1 Btu = 1055 J<br>1 cal = 4.184 J                                                                                                                                                                                                          |

#### **Basic Rotational Mechanical System Properties and Their Units**



Note: The following set of symbols and units is used throughout this book: T(t) = N-m (newton-meters),  $\theta(t) = rad$  (radians),  $\omega(t) = rad/s$  (radians/ second), K = N-m/rad (newton-meters/radian), D = N-m-s/rad (newton-meters-seconds/radian),  $J = kg-m^2$  (kilogram-meters<sup>2</sup> = newton-meters-seconds<sup>2</sup>/radian).

#### PRACTICAL EXAMPLES.

Pictures of various examples of real-world dampers are found below.



## **Mechanical Systems**

- Classification based on type of motion:
- Translational systems having linear motion
- Rotational systems having angular motion about a fixed axis

| Translational          | Rotational                     |  |  |  |
|------------------------|--------------------------------|--|--|--|
| Basic System Elements  |                                |  |  |  |
| Mass $(M)$             | Inertia (J)                    |  |  |  |
| Damper ( <i>B</i> )    | Damper (D)                     |  |  |  |
| Linear spring (K)      | Torsional spring (K)           |  |  |  |
| Basic System Variables |                                |  |  |  |
| Force $(F)$            | Torque (T)                     |  |  |  |
| Displacement $(x)$     | Angular displacement $(	heta)$ |  |  |  |

#### Mass

- Property of an element that stores the kinetic energy due to translational motion
- When a force is acting on a body of mass *M* causing displacement *x*, then:



#### Inertia

- Property of an element that stores the kinetic energy due to rotational motion
- When a torque is acting on a body of inertia J causing displacement θ, then:

• 
$$T = J \frac{d^2 \theta}{dt^2} = J \ddot{\theta}$$
  
•  $T$   
•  $f$   
 $\theta$ 

#### Damper is an element that generates force which acts opposite to the direction of motion, translational or rotational

- Damper resists motion
- Friction or dashpot are examples of dampers

#### **Translational**



$$F = B\frac{dx}{dt} = B\dot{x}$$

8/24/

# $\mathbf{R} = \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C}$ D $T = D \frac{d\theta}{dt} = D\dot{\theta}$

Rotational

## Linear Spring

- Property of an element that stores the potential energy due to translational motion
- When a spring of spring constant K is applied a force F causing an elastic displacement x, then:

$$F = Kx$$

$$F = F$$

$$F = F$$

$$K$$
8/24/2019 K

## **Torsional spring**

- Property of an element that stores the potential energy due to rotational motion
- When a torsional spring of constant *K* is applied a torque *T* causing an angular displacement  $\theta$ , then:

$$T = K\theta$$

ľ

## D'ALEMBERT PRINCIPLE

This principle states that "for any body, the algebraic sum of externally applied forces and the forces resisting motion in any given direction is zero"

#### D'ALEMBERT PRINCIPLE contd.....

- External Force: F(t)
- **Resisting Forces :**
- 1. Inertia Force:

$$F_M(t) = -M \frac{d^2 x(t)}{dt^2}$$

2. Damping Force:

$$F_D(t) = -B\frac{dx(t)}{dt}$$

3. Spring Force:

$$F_{K}(t) = -Kx(t)$$



## According to D'Alembert Principle

 $F(t) - M \frac{d^2 x(t)}{dt^2} - B \frac{dx(t)}{dt} - Kx(t) = 0$  $F(t) = M \frac{d^2 x(t)}{dt^2} + B \frac{dx(t)}{dt} + Kx(t)$ 



- Consider rotational system:
- External torque: T(t)
- **Resisting Torque:**
- (i) Inertia Torque:  $T_I(t) = -J \frac{d\omega(t)}{dt}$
- (ii) Damping Torque:  $T_D(t) = -B \frac{d\theta(t)}{dt}$
- (iii) Spring Torque:  $T_K(t) = -K\theta(t)$ According to D'Alembert Principle:

 $T_{X/2019}(t) + T_{I}(t) + T_{D}(t) + T_{K}(t) = 0$ 

$$T(t) - J\frac{d\omega(t)}{dt} - B\frac{d\theta(t)}{dt} - K\theta(t) = 0$$

$$T(t) = J \frac{d\omega(t)}{dt} + B \frac{d\theta(t)}{dt} + K\theta(t)$$

D'Alembert Principle for rotational motion states that

"For anybody, the algebraic sum of externally applied torques and the torque resisting rotation about any axis is zero."

#### TANSLATIONAL-ROTATIONAL COUNTERPARTS

| S.NO.     | TRANSLATIONAL          | ROTATIONAL                           |
|-----------|------------------------|--------------------------------------|
| 1.        | Force, F               | Torque, T                            |
| 2.        | Acceleration, a        | Angular acceleration, a              |
| 3.        | Velocity, v            | Angular velocity, ω                  |
| 4.        | Displacement, x        | Angular displacement, θ              |
| 5.        | Mass, M                | Moment of inertia, J                 |
| 6.        | Damping coefficient, B | Rotational damping<br>coefficient, B |
| 7.        | Stiffness              | Torsional stiffness                  |
| 8/24/2019 |                        |                                      |

#### Mathematical Modeling of Mechanical Systems:

Example 2:



| <ul><li>(3) Laplace transform,</li></ul>                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $[m_1s^2 + bs + (k_1 + k_2)]X_1(s) = (bs + k_2)X_2(s) + U(s)$                                                                                    |
| $[m_2s^2 + bs + (k_2 + k_3)]X_2(s) = (bs + k_2)X_1(s)$                                                                                           |
| (4) Substitute by $X_2(s)$ ,<br>$[(m_1s^2 + bs + k_1 + k_2)(m_2s^2 + bs + k_2 + k_3) - (bs + k_2)^2]X_1(s)$<br>$= (m_2s^2 + bs + k_2 + k_3)U(s)$ |
| (5) Finally,                                                                                                                                     |
| $X_1(s)$ $m_2s^2 + bs + k_2 + k_3$                                                                                                               |
| $\overline{U(s)} = \frac{1}{(m_1s^2 + bs + k_1 + k_2)(m_2s^2 + bs + k_2 + k_3) - (bs + k_2)^2}$                                                  |
| $X_2(s)$ $bs + k_2$                                                                                                                              |
| $\overline{U(s)} = \frac{1}{(m_1s^2 + bs + k_1 + k_2)(m_2s^2 + bs + k_2 + k_3) - (bs + k_2)^2}$                                                  |

#### TABLE 1. SUMMARY OF ELEMENTS INVOLVED IN LINEAR MECHANICAL SYSTEMS



## Analogous Systems

- Mechanical systems can be represented using electrical elements by the following analogies
- Two types of analogies:
  - Force (Torque) Voltage analogy (F-V analogy)
    - Force is analogous to voltage

- Force (Torque) Current Analogy (F-I analogy)
  - Force is analogous to current

#### Mass – Spring - Damper



8/24/2019

### F-V Analogy of MSD

![](_page_44_Figure_1.jpeg)

Based on Newton's 2<sup>nd</sup> law,

$$F = M\ddot{x} + B\dot{x} + Kx$$
Velocity to Current

![](_page_44_Figure_4.jpeg)

 $F \to V$   $M \to L$   $B \to R$   $K \to \frac{1}{C}$   $x \to q$ 

Based on KVL around the loop,  $V = L\ddot{q} + R\dot{q} + \frac{q}{C}$ 

## **F-V Analogy**

 $F(t)=F_m + F_b + F_k \qquad V(t)=Ri(t)+L^{\frac{d}{d}}$   $F(t)=M\frac{d^2x(t)}{dt^2}+B\frac{dx(t)}{dt}+Kx(t) \qquad \text{Take Laplace}$   $Take LT \text{ with Initial conditions} \qquad RI(s)+LsI(s)+\frac{I}{dt}$   $zero \qquad i(t)=\frac{dq(t)}{dt} \quad I(s)$ 

Conversion Techniques(F-V) Force to Voltage (F-V) Mass to Inductance (M-L) Friction to Resistance (B-R) Spring to Reciprocal of Capacitance (K -  $-\frac{1}{c}$ ) Displacement to Charge (X-Q) <sup>8/24/2019</sup> Velocity to Current V(t)=Ri(t)+L $\frac{di(t)}{dt}$ + $\frac{1}{C}\int i(t)dt$  $RI(s)+LsI(s)+\frac{I(s)}{Cs}=V(S)$  $i(t) = \frac{dq(t)}{dt}$  I(s) = SQ(s) $R[SQ(s)]+Ls[SQ(s)]+\frac{SQ(s)}{cs} = V(s)$  $V(s)=L s^{2}Q(s)+RSQ(s)+\frac{Q(s)}{c}$ 

## F-I Analogy of MSD

![](_page_46_Figure_1.jpeg)

## **F-I Analogy**

#### **Mass-Spring-Damper**

•  $F(s)=Ms^2x(s)+Bsx(s)+kx(s)$ 

**Conversion Techniques(F-I)** 

Force to Current (F-I) Mass to Capacitance (M-C) Friction to Mho (B- $\frac{1}{R}$ ) Stiffness to Reci.Procal of L (K- $\frac{1}{L}$ ) Displacment to Mag.Flux (X- $\Phi$ ) Velocity to Voltage

#### **R-L-C** Parallel

$$I = I_R + I_l + I_R$$

$$I(t) = \frac{1}{L} \int V(t) dt + \frac{V(t)}{R(t)} + C \frac{dV(t)}{dt}$$

Take LT with initial conditions Zero

$$I(S) = \frac{V(s)}{SL} + \frac{V(s)}{R(s)} + CsV(s)$$
$$WKT v(t) = \frac{d\Phi}{dt} \rightarrow V(s) = S\Phi(s)$$
$$I(S) = \frac{S\Phi(s)}{SL} + \frac{S\Phi(s)}{R(s)} + Cs[S\Phi(s)]$$
$$I(s) = CS^2 \Phi(s) + \frac{S\Phi(s)}{R(s)} + \frac{\Phi(s)}{L}$$

# Summary: Analogous Systems

 Following table shows the analogue between the elements of mechanical and electrical systems:

| Mechanical System             |                        | Electrical System |                 |  |
|-------------------------------|------------------------|-------------------|-----------------|--|
| Translational                 | Rotational             | F-V Analogy       | F-I Analogy     |  |
| Force $(F)$                   | Torque $(T)$           | Voltage (V)       | Current (I)     |  |
| Mass $(M)$                    | Inertia (J)            | Inductor (L)      | Capacitor (C)   |  |
| Friction (B)                  | Friction (D)           | Resistor $(R)$    | Conductor (1/R) |  |
| Linear spring (K)             | Torsional spring (K)   | Capacitor $(1/C)$ | Inductor (1/L)  |  |
| Displacement (x)<br>8/24/2019 | Displacement $(	heta)$ | Charge $(q)$      | Flux ( $\phi$ ) |  |

#### Transfer Function of Mechanical (Translational)System

![](_page_49_Figure_1.jpeg)

The equation of motion for the system is

 $m\ddot{x} + b\dot{x} + kx = f(t)$ 

Taking the Laplace transform of both sides of this equation and assuming that all initial conditions are zero yields

 $(ms^2 + bs + k)X(s) = F(s)$ 

where  $X(s) = \mathcal{L}[x(t)]$  and  $F(s) = \mathcal{L}[f(t)]$ . From Equation (4-1), the transfer function for the system is

$$\frac{X(s)}{F(s)} = \frac{1}{ms^2 + bs + k}$$

The equations of motion for the system are

$$m\ddot{x} + k_1x + k_2(x - y) = p$$
  
$$k_2(x - y) = b_2\dot{y}$$

Laplace transforming these two equations, assuming zero initial conditions, we obtain

$$(ms^{2} + k_{1} + k_{2})X(s) = k_{2}Y(s) + P(s)$$
  
 $k_{2}X(s) = (k_{2} + b_{2}s)Y(s)$ 

Solving Equation

we get

$$(ms^{2} + k_{1} + k_{2})X(s) = \frac{k_{2}^{2}}{k_{2} + b_{2}s}X(s) + P(s)$$

for Y(s) and substituting the result into Equation

or

$$[(ms^{2} + k_{1} + k_{2})(k_{2} + b_{2}s) - k_{2}^{2}]X(s) = (k_{2} + b_{2}s)P(s)$$

from which we obtain the transfer function

$$\frac{X(s)}{P(s)} = \frac{b_2 s + k_2}{m b_2 s^3 + m k_2 s^2 + (k_1 + k_2) b_2 s + k_1 k_2}$$

![](_page_50_Figure_11.jpeg)

Mechanical system.

Obtain the transfer function X(s)/U(s) of the system shown in Figure 4-25, where u is the force input. The displacement x is measured from the equilibrium position.

![](_page_51_Figure_1.jpeg)

Solution The equations of motion for the system are

$$m\ddot{x} = -k_2x - b_1(\dot{x} - \dot{y}) + u$$
$$b_1(\dot{x} - \dot{y}) = k_1y$$

Laplace transforming these two equations and assuming initial conditions equal to zero, we obtain

$$ms^{2}X(s) = -k_{2}X(s) - b_{1}sX(s) + b_{1}sY(s) + U(s)$$
  
$$b_{1}sX(s) - b_{1}sY(s) = k_{1}Y(s)$$

Eliminating Y(s) from the last two equations yields

$$(ms^{2} + b_{1}s + k_{2})X(s) = b_{1}s\frac{b_{1}s}{b_{1}s + k_{1}}X(s) + U(s)$$

Simplifying, we obtain

$$[(ms^{2} + b_{1}s + k_{2})(b_{1}s + k_{1}) - b_{1}^{2}s^{2}]X(s) = (b_{1}s + k_{1})U(s)$$

from which we get the transfer function X(s)/U(s) as

$$\frac{X(s)}{U(s)} = \frac{b_1 s + k_1}{m b_1 s^3 + m k_1 s^2 + b_1 (k_1 + k_2) s + k_1 k_2}$$

**B–3–6.** Obtain the transfer functions  $X_1(s)/U(s)$  and  $X_2(s)/U(s)$  of the mechanical system shown in Figure 3–35.

![](_page_53_Figure_1.jpeg)

Figure 3-35 Mechanical system.

The equations for the system are

B-3-6

$$m_{1}\ddot{x}_{1} = -k_{1}\chi_{1} - b_{1}\dot{\chi}_{1} - k_{3}(\chi_{1} - \chi_{2}) + u$$

$$m_{2}\ddot{\chi}_{2} = -k_{2}\chi_{2} - b_{2}\dot{\chi}_{2} - k_{3}(\chi_{2} - \chi_{1})$$

Rewriting, we have

$$m_1 x_1 + b_1 x_1 + k_1 x_1 + k_3 x_1 = k_3 x_2 + u$$
  
$$m_2 x_2 + b_2 x_2 + k_2 x_2 + k_3 x_2 = k_3 x_1$$

Assuming the zero initial condition and taking the Laplace transforms of these two equations, we obtain

$$(m_1 s^2 + b_1 s + k_1 + k_3) X_1(s) = k_3 X_2(s) + U(s)$$
(1)  
$$(m_2 s^2 + b_2 s + k_2 + k_3) X_2(s) = k_3 X_1(s)$$
(2)

By eliminating  $X_2(s)$  from Equations (1) and (2), we get

2

$$(m_1s^2+b_1s+k_1+k_s)X_1(s) = \frac{k_3}{m_2s^2+b_2s+k_2+k_3}X_1(s) + \overline{U}(s)$$

Hence

$$\frac{X_{1}(s)}{U(s)} = \frac{m_{2}s^{2} + b_{2}s + k_{2} + k_{3}}{(m_{1}s^{2} + b_{1}s + k_{1} + k_{3})(m_{2}s^{2} + b_{2}s + k_{2} + k_{3}) - k_{3}^{2}}$$
on (2), we obtain

From Equation (2), we obtain

$$\frac{X_2(s)}{X_1(s)} = \frac{k_3}{m_2 s^2 + b_2 s + k_2 + k_3}$$

Hence

.

$$\frac{X_2(s)}{T(s)} = \frac{X_2(s)}{X_1(s)} \frac{X_1(s)}{T(s)} = \frac{k_3}{(m_1 s^2 + b_1 s + k_1 + k_3)(m_2 s^2 + b_2 s + k_2 + k_3) - k_3^2}$$

٠

.

## **Rotational Systems**

Dr V S Krushnasamy

#### EXAMPLE 1.5

Write the differential equations governing the mechanical rotational system shown in fig 1. Obtain the transfer function of the system.

![](_page_58_Figure_2.jpeg)

#### SOLUTION

In the given system, applied torque T is the input and angular displacement  $\boldsymbol{\theta}$  is the output.

Let, Laplace transform of  $T = \mathcal{L}{T} = T(s)$ 

Laplace transform of  $\theta = \mathcal{L}\{\theta\} = \theta(s)$ 

Laplace transform of  $\theta_1 = \mathcal{L}\{\theta_1\} = \theta_1(s)$ 

Hence the required transfer function is  $\frac{\theta(s)}{T(s)}$ 

The system has two nodes and they are masses with moment of inertia  $J_1$  and  $J_2$ . The differential equations governing the system are given by torque balance equations at these nodes.

Let the angular displacement of mass with moment of inertia  $J_1$  be  $\theta_1$ . The free body diagram of  $J_1$  is shown in fig 2. The opposing torques acting on  $J_1$  are marked as  $T_{11}$  and  $T_k$ .

.....(2)

$$T_{j1} = J_1 \frac{d^2 \theta_1}{dt^2}$$
;  $T_k = K(\theta_1 - \theta)$ 

By Newton's second law,  $T_{i1} + T_k = T$ 

$$J_{1} \frac{d^{2} \theta_{1}}{dt^{2}} + K(\theta_{1} - \theta) = T$$
$$J_{1} \frac{d^{2} \theta_{1}}{dt^{2}} + K\theta_{1} - K\theta = T$$

![](_page_59_Figure_4.jpeg)

....(1) Fig 2: Free body diagram of mass with moment of inertia  $J_{1}$ .

On taking Laplace transform of equation (1) with zero initial conditions we get,

 $J_1 s^2 \theta_1(s) + K \theta_1(s) - K \theta(s) = T(s)$ 

 $(J_1 s^2 + K) \theta_1(s) - K \theta(s) = T(s)$ 

The free body diagram of mass with moment of inertia  $J_2$  is shown in fig 3. The opposing torques acting on  $J_2$  are marked as  $T_{j2}$ ,  $T_b$  and  $T_k$ .

 $T_{j2} = J_2 \frac{d^2 \theta}{dt^2}$ ;  $T_b = B \frac{d \theta}{dt}$ ;  $T_k = K(\theta - \theta_1)$ 

By Newton's second law,  $T_{j2} + T_b + T_k = 0$ 

$$J_{2} \frac{d^{2}\theta}{dt^{2}} + B \frac{d\theta}{dt} + K(\theta - \theta_{1}) = 0$$
$$J_{2} \frac{d^{2}\theta}{dt^{2}} + B \frac{d\theta}{dt} + K\theta - K\theta_{1} = 0$$

 $J_2$ 

Fig 3 : Free body diagram of mass with moment of inertia  $J_2$ .

On taking Laplace transform of above equation with zero initial conditions we get,

 $J_2 s^2 \theta(s) + B s \theta(s) + K \theta(s) - K \theta_1(s) = 0$ 

$$(J_2 s^2 + Bs + K) \theta(s) - K\theta_1(s) = 0$$
  
$$\theta_1(s) = \frac{(J_2 s^2 + Bs + K)}{K} \theta(s) \qquad \dots (3)$$

Substituting for  $\theta_1(s)$  from equation (3) in equation (2) we get,

$$(J_1s^2 + K) \frac{(J_2s^2 + Bs + K)}{K} \theta(s) - K\theta(s) = T(s)$$

$$\left[\frac{(J_1s^2 + K) (J_2s^2 + Bs + K) - K^2}{K}\right] \theta(s) = T(s)$$

$$\frac{\theta(s)}{T(s)} = \frac{K}{(J_1 s^2 + K) (J_2 s^2 + Bs + K) - K^2}$$

. . . . . .

-

\_\_\_\_\_

#### RESULT

The differential equations governing the system are,

$$I. J_1 \frac{d^2 \theta_1}{dt^2} + K \theta_1 - K \theta = T$$

2. 
$$J_2 \frac{d^2 \theta}{dt^2} + B \frac{d \theta}{dt} + K \theta - K \theta_1 = 0$$

The transfer function of the system is,

$$\frac{\theta(s)}{T(s)} = \frac{K}{(J_1 s^2 + K) (J_2 s^2 + Bs + K) - K^2}$$