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Basic Types of Mechanical Systems

* Translational

— Linear Motion

e Rotational
— Rotational Motion
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Basic Elements of Translational Mechanical Systems

Translational Spring

o Y YY ™

Translational Mass

ao— M =

Translational Damper

iii)

o] o



* Mechanical Translational system
(mass-spring-dashpot)
* Mass: The Mass 1s an mertial element
— Force (F) =—> Acceleration =—>Reaction force

E_|T’_"
Mass
- (1) F[I)—Mdvm Fii wdzx(f)
S dr AR

M =F0)
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Translational Mass

Translational Mass is an inertia Translational Mass
element. i) —

a—t M [

A mechanical system without
mass does not exist.

If a force F is applied to a mass x(t)
and it is displaced to x meters

then the relation b/w force and F ()
displacements is given by
Newton’s law.

F=ma
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Translational Damper

 When the viscosity or drag is not
negligible in a system, we often
model them with the damping

force.
* All the materials exhibit the ~ Translational Damper
property of damping to some ) =
W i
extent. LN

* If damping in the system is not
enough then extra elements (e.g.
Dashpot) are added to increase
damping.



Common Uses of Dashpots

Vehicle Suspension

Bri '
ridge Suspension Flyover Suspension
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* Dashpot (damper) -— |—

— The reaction damping force F is approximated by
the product of damping f and relative velocity if
any.

- F(t)=f (v;-v,) = v

Viscous damper

l—r — X(/)

o M. FO=/0 Fo- -7=r

l] ;
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Translational Spring

* A translational spring is a mechanical element that
can be deformed by an external force such that the

deformation is directly proportional to the force
applied to it.

Translational Spring

Circuit Symbol
Ircuit Symbols Translational Spring
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Translational Spring
If Fis the applied force

X5 GMO—FF
Then X is the deformationif x, = O I-\W F
Or (X, —X,) isthe deformation. (I F

The equation of motion is given as

Where K is stiffness of spring expressed in N/m



c d

* Spring — W

— Restoring force ——» Reaction Force on each
end is same

— The spring element force equation, 1n accordance
with Hooke’s Law 1s g1ven by:

- FL — K (XC-Xd)
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Basic Translational Mechanical System Properties and Their Units

—

Parameter Symbol Used SIUnits  Other Units Conversion Factors
Mass M kilogram  slug 1kg = 1000g
(kg) fuisec” = 2.2046 Ib(mass)
= 35.274 oz(mass)
= (.06852 slug
Distance y meter (m) ft Im = 3.2808 ft = 39.37in
in lin, = 254 mm
1ft = 0.3048m
Velocity v m/sec fusec
in/sec
Acceleration a m/sec? fifsec?
in/sec?
Force f Newton  pound IN = (.2248 Ib(force)
(N) (Ib force) = 3.5969 oz(force)
e IN = 1kg-m/s?
1dyn = 1g—cm/s*
Spring Constant K N/m /R
Viscous Friction Coefficient B N/m/sec  Ibffusec




Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

Impedence
Component Force-velocity Force-displacement Zy(s) =F(s)/X(s)
Spring
—I—» x(f)
%Wm fO=Kfu@de  f) =Kl K
K
Viscous damper
——= x(1) .-it'{,[']
% I - _ﬂ” _ﬁ.!'] =_f‘u_'|-*{.l'] _ﬂ:.l'] =f|;T fu_.i'
t
Mass
——== x{1)
: fliy=M d:&'[r] fl(i=M di;f] Ms?

Note: The following set of symbols and unis s wed throughout this book: fir) =N (newtons),
x(t) = m (meters), v(f) = mis (metersfsecond), K = N/m (newtons/meter), f, = N-s/m({newiton-seconds/
mﬂtergﬁz Oégkg (kilograms = newton-seconds” /meter).



Steps to Obtain the Transfer Function
of Mechanical System.

The mechanical system requires just one differential equation,
called the equation of motion, to describe it.

First, draw a free-body diagram, placing on the body all forces that
act on the body either in the direction of motion or opposite to it.
Second, use Newton’s law to form a differential equation of
motion by summing the forces and setting the sum equal to zero.
Finally, assuming zero initial conditions, we take the Laplace
transform of the differential equation, separate the variables, and
arrive at the transfer function.



Example-1: Find the transfer function, X(s)/F(s), of the system.

——== x(1)
K B
= DR ANAYA A F Free Body Diagram (FBD)
C EME ) ——
I S '
£

First step is to draw the free-body diagram.

Place on the mass all forces felt by the mass.

We assume the mass is traveling toward the right. Thus, only the applied force points to
the right; all other forces impede the motion and act to oppose it. Hence, the spring,
viscous damper, and the force due to acceleration point to the left.

Second step is to write the differential equation of motion using Newton’s law to sum to
zero all of the forces shown on the mass.

- dx(1)

dx(t)
M
dr*

+f, =+ Kx() = [ (1
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Example-1: Continue.
e Third step is to take the Laplace transform, assuming zero initial conditions,

Ms* X (s) + f,sX(s) + KX(s) = F(s)
or (Ms® + s + K)X (s) = F(s)

* Finally, solving for the transfer function yields

Go) X(s) l
5) = =
TFRGs) T M2+ fs+K
Block Diagram
Fi(s) 1 X(5)

) L
8/24/2019 Ms=+f.5+ K
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ROTATIONAL SYSTEM: The rotational motion of a
body can be defined as the motion of a body
about a fixed axis. There are three types of
torques resists the rotational motion.

1. Inertia Torque: Inertia(J) is the property of an
element that stores the kinetic energy of
rotational motion. The inertia torque Tl is the
product of moment of inertia J and angular
acceleration a(t).

I (1= Ja(r) = g 100 _ 74760

dt dr’
Where w(t) is the angular velocity and 6(t) is the angular

displacement.




2. Damping torque: The damping torque T,(t) is the
product of damping coefficient B and angular
velocity w. Mathematically

do(t)
dt

T, (t)=Bax(t)=B

3. Spring torque: Spring torque Ty(t) is the product
of torsional stiffness and angular displacement.

Unit of ‘K’ is N-m/rad

T,(H) =Ko



TORSIONAL SPRINGS

Consider the torsional spring shown in Figure 3-2 (a), where one end is fixed
and a torque T is applied to the other end. The angular displacement of the free

end is @. The torgue T in the torsional spring is
=k 0 (3-3)

where @ is the angular displacement and L-T is the spring constant for

torsional spring and has units of [Torque/angular displacement]=[N-m/rad] in SI
units.

(—0C D¢

Figure 3-2 (a) A torque T is applied at one end of torsional spring, and the other
end is fixed; (b) a torque T is applied at one end, and a torque T, in
8/24/2019 the opposite direction, is applied at the other end.




Rotational Spring
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Rotational Damper

Figure 3-4 (a) Translational damper; (b) torsional (or rotational) damper.
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Rotational Damper

TORSIONAL DAMPER

For the torsional damper shown in Figure 3-4(b), the torques T applied to
the ends of the damper are of equal magnitude, but opposite in direction. The

angular velocities of the ends of the damper are Hl and 92 and they are taken
relative to the same frame of reference. The damping torque [ that arises in the

damper is proportional to the angular velocity differences 9] = Igz of the ends, or

I :EJT(E?[ —H}_]:IJTE? (3-6)
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Basic Rotational Mechanical System Properties and Their Units

Symbol  SI Other
Parameter Used Units Units Conversion Factors
Inertia J kg-m’ slug-ft’ lg-cm =
Ib-ft-sec? 1.417 x 107° oz-in.-sec?
oz-in.-sec® | |b-frsec?
= 192 oz-in.-sec?
= 32.21b-ft?
1 0z-in.-sec® = 386 0z-in?
1 g-cm-sec® = 980 g-cm?
Angular Displacement T Radian Radian gl %0 = 57.3 deg
Angular Velocity 0 radian/sec radian/sec 1 2w
om = 65
= 0.1047 rad/sec
1rpm = Gdeg/sec
Angular Acceleration A radian/sec®  radian/sec”
Torque T {N-m) 1b-ft 1 g-cm = 0.0139 oz-in.
dyne-cm 0z-in. 11b-It = 192 oz-in.
1 0z-in. = 0.00521 I1b-ft
Spring Constant K N-m/rad ft-1b/rad
Viscous Friction Coefficient B N-m/rad/sec  ft-Ib/rad/sec
Energy 0 J Goules) Btu 1J = 1N-m
Calorie I Btu = 1055)

lcal = 4.184)
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Component

Torque- Torque-
angular angular
velocity displacement

Impedance
Zu(s) = T(s) o(s)

Tiry B(r)
Spring /7Y /7Y
1

VISCOUS 7y H(r)

damper ava

Inertia /7y /7y

N

~ I

ity = K| w(tdr Tty = Kair)

J1

T(t) = Dwi(t)

NMote: The following set of symbols and units is used throughout this book: T(r) = N-m

(newton-meters). #ir)=rad (radians).

wi ) =rad,/s (radians/ second), & =N-m, rad {mwmn—

meters  radian), = N-m-s/rad (newton-meters-seconds /radian), J = kg-m* (kilogram-meters’

— RO meters-seconds? radian).




PRACTICAL EXAMPLES.

Pictures of various examples of real-world dampers are found below.
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Mechanical Systems

Classification based on type of motion:
— Translational systems having linear motion

— Rotational systems having angular motion about a fixed axis

Translational Rotational

Basic System Elements

Mass (M) Inertia (/)
Damper (B) Damper (D)
Linear spring (K) Torsional spring (K)

Basic System Variables
Force (F) Torque (T)

o000 Displacement (x) Angular displacement ()



Mass Inertia

+ Property of an element that + Property of an element that
stores the kinetic energy dueto  stores the kinetic energy due to

translational motion rotational motion
» When a force is acting on a » When a torque is acting on
body of mass M causing body of inertia | causing
displacementx then: displacement 6, then:
dp .
F_dr_Mﬁ_Mx o T = ]dﬂ_m
- L
0 J
X " M i

FIRYIEE



+ Damper is an element that generates force which acts opposite to
the direction of motion, translational or rotational

v Damper resists motion

* Friction or dashpot are examples of dampers

Translational Rotational
I:I—R C a d > _L)
_ 1 | \ o R Co )
B D
dx
_p™ . af
f=b = b T=D— = Df



Linear Spring Torsional spring

Property of an element that v Property of an element that stores
stores the potential energy due to the potential energy due to
translational motion rotational motion
When a spring of spring constant ~+ When a torsional spring of constant
K'is applied a force £ causing an K is applied a torque T causing an
elastic displacement ¥, then: angular displacement 8, then:
F=Kx o T=K§

F [

oR\\/\Ce R Ca

K K



D'ALEMBERT PRINCIPLE

This principle states that “for any body, the

algebraic sum of externally applied forces
and the forces resisting motion in any given
direction is zero”



D’ALEMBERT PRINCIPLE contd......

External Force: F(t)

Resisting Forces :

1. Inertia Force:
d’x(t) |

F, ()=—M

2

2. Damping Force: N
dx (1)

F,(t)=-B
p (D) o

3. Spring Force: i

8/24/20% K (r) — _K}‘(r)

r

X(t)



According to D'Alembert Principle

d"x(r) 5 dx(t)
dt’ dt
d°x(f)  dx(t)

Fit)=M—"=+B—=+Kx(1

F(f)-M

~Kx(1) =0




RS



Consider rotational system:
External torque: T(t)

Resisting Torque:

(i) Inertia Torque: T,(1)=-J df;‘ff)
(ii) Damping Torque: T, (f)=- %

(iii) Spring Torque: T, (1) = —K 6(¢)
According to D’Alembert Principle:

T+ T, (1) + T (1) + T (1) =0

8/24/2019



dot) _pdt® _ gom =0
di di

T(t)-J

daot) R do(t)

[(t)y=J
) dt dt

+ K6(1)

D'Alembert Principle for rotational motion states
that

“For anybody, the algebraic sum of externally
applied torques and the torque resisting rotation
about any axis is zero.”

8/24/2019



TANSLATIONAL-ROTATIONAL COUNTERPARTS

TRANSLATIONAL ROTATIONAL

1 Force, F Torque, T

2 Acceleration, a Angular acceleration, a
3 Velocity, v Angular velocity, w

4, Displacement, x Angular displacement, 6
5 Mass, M Moment of inertia, ]

6 Damping coefficient, B Rotational damping

coefficient, B

/. Stiffness Torsional stiffness

8/24/2019



Mathematical Modeling of Mechanical Systems:

Example 2;
u — X| —- 13
% L . % (3) Laplace transform,
/ Akk =
g A my Y¥YY sy W g [mlsz + bs + (kl + kg)]Xl(S] = (bS + kz)Xz(S) + U(S)
1 & —d— b f 2
g b 7 [mos” + bs + (ky + k3) | Xo(s) = (bs + kp)Xy(s)
7 ////////////97797777777777%

(4) Substitute by Xy(s),

(1) Equation of motion:
(st + bs + ky + ky){mys? + bs + ky + ks) - (bs + ky)X,(s)

ml,'r'l = —k1.?£1 — kz(xl - .1’.2) - b(x1 - .X'g) +U

= (mys? + bs + ky + ksJU(s)
mz.fz = _k3.l'2 - kz(xz - Il) - b(.rg = .1.'1) (5) Fina"y,
D e Xi(s) myst + bs + ky + k3
(2) Slmpllfymg" Uls) ) (mlsz +bs+ 1k + kl)[mzsz +hs+k+ kg) - (ba + .fcg)2
miy + biy + (ky + ko)ry = by + ko +u Xl bs + k,

UGS)  (mys* + bs + ky + ko)(mos? + bs + kg + k) = (bs + k)
Myt b + (ks + ksl = by + kox,

24/2019



TABLE 1.

Element

SUMMARY OF ELEMENTS INVOLVED IN LINEAR MECHANICAL SYSTEMS

Translation

Rotation

F.
Inertia :
> F=ma T
YXT=Ja
X, X, k
F el W F TS%%C T
Spring k o, &,
F=k(x,—x,)=kx T=k(6,—6,)=k8
|—"i-| I_)I’-l b
e e oL
Damper b - .
6 6,

F =b(x, —x,)=bx

T=b(6,—6,)=b8
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Analogous Systems

»Mechanical systems can be represented using electrical elements
by the following analogies

* Two types of analogies:
- Force (Torque) - Voltage analogy (F-V analogy)

* Force is analogous to voltage

- Force (Torque) - Current Analogy (F- analogy)
* Force is analogous to current



Mass — Spring - Damper

N\ Reference
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F-V Analogy of MSD

S8 Reference




F-V Analogy

F(t)=Fy, + Fy + F V(t)=Ri(tHH L= [ i) dt

dzx(t) dx(t)

F(t)=M +B

+ Kx(t) Take LapIace

Take LT W|th Inltlal conditions RI(s)+LsI(s)+ —V(S)
Zero

F(s)=Ms?x(s)+Bsx(s)+kx(s)

i(t)=22Y 1(s)= sQ(s)

SQ(S)

Conversion Techniques(F-V) R [SQ(S)]"'LS [SQ(S)]T
Force to Voltage (F-V)
Mass to Inductance (M-L)

2 Q (S)
Friction to Resistance (B-R) V(S) Ls Q(S)+RSQ(S)+
Spring to Reciprocal of Capacitance (K - -%)

Displacement to Charge (X-Q)
8/24/2019
Velocity to Current

= V(s)



F-1 Analogy of MSD

== Reference




F-1 Analogy

Mass-Spring-Damper

F(s)=Ms?x(s)+Bsx(s)+kx(s)

Conversion Techniques(F-I)

Force to Current (F-l)
Mass to Capacitance (M-C)

Friction to Mho (B- %)

Stiffness to Reci.Procal of L (K- %)

Displacment to Mag.Flux (X- )
Velocity to Voltage

8/24/2019

R-L-C Parallel
I - IR + Il + IR
(t)= [ V(t) dt+ Vgt; =

Take LT with initial conditions Zero
V(s)  V(s)

1(S)= - TR(S)+C5V(S)

WKT v(t) = — —>V(s) SD(s)
()= 22 +Sf(§) +CS[SD(S)]

SO(s) . D(s)

I(s)=CS? D(s) +

R(s) L



Summary: Analogous Systems

* Following table shows the analogue between the elements of
mechanical and electrical systems:

Mechanical System Electrical System

Translational Rotational F-V Analogy F-1 Analogy
Force (F) Torque (T) Voltage (V) Current (I)
Mass (M) Inertia (/) Inductor (L) Capacitor (C)

Friction (B) Friction (D) Resistor (R) Conductor (1/R)
Linear spring (K) Torsional spring (K) Capacitor (1/C) Inductor(1/L)

Displacement (x) Displacement () Charge (q) Flux (¢)
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Transfer Function of Mechanical
(Translational)System

Figure 41 Mechanical system.

The equation of motion for the system 1s
mx + bx + kx = f(t)

Taking the Laplace transform of both sides of this equation and assuming that all initial
conditions are zero yields

(ms* + bs + k)X (s) = F(s)

where X(s) = %[x(1)] and F(s) = £[f(¢)]. From Equation (4-1), the transfer func-
tion for the system is




The equations of motion for the system are
mx + kyx + ka(x — y) = p
kalx — y) = bay
Laplace transforming these two equations, assuming zero initial conditions, we obtain
(ms* + ky + k2) X (s) = ka¥Y (5) + P(s)
kaX(5) = (ka + bs)Y (5)
Solving Equation for Y(s) and substituting the result into Equation we get

ky?

{m.rz -+ k'l. -+ .‘.'E}Il:.!-'] = mX(J} -+ P{j‘}

or
[(ms® + ky + ka)(kz + bos) — k)X (5) = (ka + bys)P(s)
from which we obtain the transfer function
A(s) _ bas + ko
P(s)  mbys® + mkys® + (ki + ka)bys + ki

X Mechanical system.



Obtain the transfer function X(s)/U(s) of the system shown in Figure 4-25, where u is the
force input. The displacement x is measured from the equilibrium position.




Solution The equations of motion for the system are
mi = =kyx = by(x - y) + u
bi(x = y) = kyy

Laplace transforming these two equations and assuming initial conditions equal to
zero, we obtain

ms*X(s) = =k, X (s) = bisX(s) + bysY(s) + U(s)
bisX(s5) = bysY(s) = kY (s)
Eliminating Y(s) from the last two equations yields

b]-':'

(ms® + bys + k) X(s) = bljb]s vk

X(s) + Uls)

Simplifying, we obtain
[(ms® + bys + ko) (bys + ky) = b5 X (5) = (bys + ky)U(s)
from which we get the transfer function X(s)/U(s) as
X(s) bis + ki

—— e,

U(S)  mbys® + mkys® + bilky + k)s + kiks




B-3-6. Obtain the transfer functions X,{s)/U(¥5) and
A5} /U (5) of the mechanical system shown in Figure 3-35.

e |

el _‘l:l

Figure 3-35 Mechanical system.

R




B-3-6.  The equations for the system are
Mm%y =y Y=y A, - bz (G =2) T U

My ;-;I. - ""'é; z'ﬁ "'bziz—'k_! (xz."' xf)
Rewr:ltimr we have - 4 |
| {If;;,*t"é: ;f, + &, x;+k3 X, = Ié! Aot U

| . mt;&-\" b,j’z'l"kz.ft + A3 x&“k.!x{



Assmingﬂmeminitialcmdiumandtﬂdmtheuplmtramfmofﬂme
two equations, we obtsin

(%s-t-h-?‘fkf‘l'b))ﬁ@ b .0+ U (1)

| (Mes*thast ot ks)X2(D= £; X: &) (2
By eliminating Xp(s) from Equations (1) and (2), we get

N k"“

(5 stk Tk = — -

o ( ’ . _,. fé )X}_t&) e stHby st ko ks

X6)+ Ut)



Hence

Hence

_Xib) _

“0G) T Cmis® +b;.5‘-l- é:f‘ks)(mgs +b.z.$‘+k:.+i'5) ""/fa
From Equaticn (2), we obtain

X:6)

Rs

XiG) T M byt ke ths

X=6) _ X X8 _

TE) T XB UE)

A3z
., R ———
(5% bystR + ks ) (e s+ b 5+ kaThs)—Ks



Rotational Systems
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EXAMPLE 1.5

Write the differential equations governing the mechanical rotational system shown in fig 1. Obtain the Iransfer function
of the system.

] A

F

o Tl - I el
T K .y B
(Applied Torque) (Qutput)

SOLUTION

in the given system, applied torque T is the input and angular displacement 8 is the output.
Let, Lapiace transformof T = L{T}=T(s)
Laplace transformof @ = L{B8} =6(s)
Laplace transform of 6, = L{0,} =6 (s)

B(s)
T(s)
The system has two nodes and they are masses with moment of inertia J, and J,,. The differentiai equatlons goveming
the sy'stem are given by torque balance equations at these nodes.

Hence the required transfer functionis ——



Letthe angular displacement of mass with momentofinertia J, be 6.. The free body diagram of J, is shown infig 2. The
opposing torques acting on J_t are marked as Tj1 andT,.

49
.Tn = J#"Fl Tk = !{(91 B 9)
By Newton's second law, T+ T, =T T.T,

Gl K(-0)=T XK

a - T
. 2 ‘ . . . . ’

e %, 901, o, - - T ) Fig 2 : Free body dm.gran‘a of mass with

dt? moment of inertia J,

Ontaking Laplace transform of equation (1) with zero initial conditions we get,
J, 5% 8,(s) + K0,(s) - K8(s) = T(s)

(4;5% +K) B(s) ~ K 6(s) = T(5) f?)



The free body diagram of mass with moment of inertia J,is showninfig 3. The opposing torques acting on J, are marked
as T, T,andT,

, . |
AR L BTRS

T,=dy—
2=V
oo ' Ak
By Newton's second law, T+ T, +T,=0 . - / -
? W)
o _db | -9
: ng{f i B'&T +K{8-6:)=0 Fig 3 : Free body diagram of mass with
: moment of inertia J, |
d’s . df
. J2—2+B—+K9-K91 :{]
e dt

Ontaking Laplace transform of above equation with zero initial conditions we get,

J,5%0(s) + B s 8(s) + KO(s) - K8 (5) = 0



(J,5% +Bs+ K) 8(s) - KBy(s) = 0

EICRCLEL L P e

K

e

Substituting for 6, (s) from equation (3) in equation (2) we get,

J,5° +Bs +K)

(Js° +K) ( 6(s) - Ko(s) = T(s)

(8% +K) (457 + Bs +K)-K?
K :

B(s) = T(s)

l_-.lu_

(5) (Js°+K) (st2+55+*<)-*<2-

- 8(s) K
S




RESULT

The differential equations governing the system are,

2
1. J!dgi*k‘:&—}{e:T
dt
2 _
2. 3,52 :B% ko _Ke,=0
_ dt dt

The transfer function of the system is,

o) K
T(s) (J52 +K) (J,82 + Bs + K) - K2













