III B.Tech II Semester Examinations,APRIL 2011 FEM METHODS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Describe the co-ordinate transformations for the sub parametric element with simple example.
2. (a) Discuss the Gaussian quadrature two point formula along with their weights to be considered.
(b) Derive the equation for det J in terms of the element area when the linear quadrilateral element is a rectangle.
[8+8]
3. Calculate the element stiffness matrix and the thermal force vector for the plane stress element as shown in figure 8. The element experiences a $10^{\circ} \mathrm{c}$ increase in temperature.
Take
Thickness, $\mathrm{t}=0.5 \mathrm{~cm}$
Young's Modulus, $\mathrm{E}=15 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$
Poisson's Ratio $=0.25$
Thermal co-efficient of expansion $=6 \times 10^{-6} /{ }^{0}$ c.

Figure 8
4. How to solve 1-D axi-symmetrical finite element problems? Explain for thin cylindrical shell.
5. (a) Explain how mass is distributed at different nodes and in different degress of freedom in lumped mass matrix of a beam element in space.
(b) How is consistent mass matrix derived?
6. (a) What is the refinement process in mesh generation? Explain.
(b) Explain the graphical out put facilities available for the display and analysis of results in ANSYS package.
7. Explain structural discretization for the following with the help of global discrete coordinate:
(a) Shear deformations
(b) Axial problems
(c) Torsional problems
(d) Bending problems.
8. (a) Differentiate the macro and micro modelling system in FEM.
(b) Explain the terms stiffness and Interia in terms of energy base and equilibrium base.

III B.Tech II Semester Examinations,APRIL 2011 FEM METHODS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. How to solve 1-D axi-symmetrical finite element problems? Explain for thin cylindrical shell.
2. Explain structural discretization for the following with the help of global discrete coordinate:
(a) Shear deformations
(b) Axial problems
(c) Torsional problems
(d) Bending problems.

$$
[4+4+4+4]
$$

3. Calculate the element stiffness matrix and the thermal force vector for the plane stress element as shown in figure 8. The element experiences a $10^{\circ} \mathrm{c}$ increase in temperature.
Take
Thickness, $\mathrm{t}=0.5 \mathrm{~cm}$
Young's Modulus, $\mathrm{E}=15 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$
Poisson's Ratio $=0.25$
Thermal co-efficient of expansion $=6 \times 10^{-6} /{ }^{0} \mathrm{c}$.

Figure 8
4. (a) Differentiate the macro and micro modelling system in FEM.
(b) Explain the terms stiffness and Interia in terms of energy base and equilibrium base.
5. Describe the co-ordinate transformations for the sub parametric element with simple example.
6. (a) Discuss the Gaussian quadrature two point formula along with their weights to be considered.
(b) Derive the equation for det J in terms of the element area when the linear quadrilateral element is a rectangle.
7. (a) Explain how mass is distributed at different nodes and in different degress of freedom in lumped mass matrix of a beam element in space.
(b) How is consistent mass matrix derived?
8. (a) What is the refinement process in mesh generation? Explain.
(b) Explain the graphical out put facilities available for the display and analysis of results in ANSYS package.
[8+8]

III B.Tech II Semester Examinations,APRIL 2011 FEM METHODS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Differentiate the macro and micro modelling system in FEM.
(b) Explain the terms stiffness and Interia in terms of energy base and equilibrium base.
2. (a) What is the refinement process in mesh generation? Explain.
(b) Explain the graphical out put facilities available for the display and analysis of results in ANSYS package.
3. Describe the co-ordinate transformations for the sub parametric element with simple example.
4. Explain structural discretization for the following with the help of global discrete coordinate:
(a) Shear deformations
(b) Axial problems
(c) Torsional problems
(d) Bending problems.

$$
[4+4+4+4]
$$

5. Calculate the element stiffness matrix and the thermal force vector for the plane stress element as shown in figure 8. The element experiences a $10^{\circ} \mathrm{c}$ increase in temperature.
Take
Thickness, $\mathrm{t}=0.5 \mathrm{~cm}$
Young's Modulus, $\mathrm{E}=15 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$
Poisson's Ratio $=0.25$
Thermal co-efficient of expansion $=6 \times 10^{-6} /{ }^{0} \mathrm{c}$.

Figure 8
6. (a) Explain how mass is distributed at different nodes and in different degress of freedom in lumped mass matrix of a beam element in space.
(b) How is consistent mass matrix derived?
7. (a) Discuss the Gaussian quadrature two point formula along with their weights to be considered.
(b) Derive the equation for det J in terms of the element area when the linear quadrilateral element is a rectangle.
$[8+8]$
8. How to solve 1-D axi-symmetrical finite element problems? Explain for thin cylindrical shell.

III B.Tech II Semester Examinations,APRIL 2011 FEM METHODS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain how mass is distributed at different nodes and in different degress of freedom in lumped mass matrix of a beam element in space.
(b) How is consistent mass matrix derived?
2. (a) Differentiate the macro and micro modelling system in FEM.
(b) Explain the terms stiffness and Interia in terms of energy base and equilibrium base.
3. (a) What is the refinement process in mesh generation? Explain.
(b) Explain the graphical out put facilities available for the display and analysis of results in ANSYS package.
4. Describe the co-ordinate transformations for the sub parametric element with simple example.
5. How to solve 1-D axi-symmetrical finite element problems? Explain for thin cylindrical shell.
6. Explain structural discretization for the following with the help of global discrete coordinate:
(a) Shear deformations
(b) Axial problems
(c) Torsional problems
(d) Bending problems.

$$
[4+4+4+4]
$$

7. (a) Discuss the Gaussian quadrature two point formula along with their weights to be considered.
(b) Derive the equation for det J in terms of the element area when the linear quadrilateral element is a rectangle.
[8+8]
8. Calculate the element stiffness matrix and the thermal force vector for the plane stress element as shown in figure 8. The element experiences a $10^{\circ} \mathrm{c}$ increase in temperature.
Take
Thickness, $\mathrm{t}=0.5 \mathrm{~cm}$
Young's Modulus, $\mathrm{E}=15 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$

Poisson's Ratio $=0.25$
Thermal co-efficient of expansion $=6 \times 10^{-6} /{ }^{0} \mathrm{c}$.

Figure 8

