END SEMESTER EXAMINATIONS- APRIL/MAY 2013

B. E. / B.Tech (Full Time) Regulations-2004
 IT 531 Algorithm Design Techniques

Max. Marks 100

Part A $(10 \times 2=20 \mathrm{marks})$

1. Find the order of $\mathrm{n}^{3}+300+500$
2. Define Θ notation.
3. List the basic steps involved while solving any problem using the Divide-andConquer strategy.
4. State a problem that is solved using a Greedy algorithm.
5. What are Greedy algorithms?
6. Give an application of the Longest Common Sequence problem.
7. How is the solution for 8 -Queens problem represented?
8. What is meant by best-first branch-and-bound algorithm?
9. Define NP problems using language theoretic framework.
10. State a classical NPC problem.

Part B (5 X 16 = 80 marks)

11. Write the complete Merge-sort algorithm including any algorithm it uses and do a worst case analysis of it. Show how the algorithm works on the list $\{10,15,25,35,50,90,40,80\}$
12. (a) Write the complete Quick-sort algorithm including any algorithm it uses. Generate a recurrence relation for its worst case analysis.
Solve this recurrence relation and arrive at its worst-case behavior. $\quad(8+2+6)$
(OR)
(b) Write the algorithm FASTEST-WAY that finds the fastest way through the factory which has two assembly lines.
13. (a) Write down the MATRIX- CHAIN_ORDER algorithm. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is ($5,10,3,2,5$). How many scalar multiplications are done in that case? Show the \mathbf{m} table and \boldsymbol{s} table generated.
