Reg. No.

C

B. Tech. Degree V Semester Special Supplementary Examination August 2015

IT 1504 DESIGN AND ANALYSIS OF ALGORITHMS

(2012 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART A

(Answer ALL questions)

 $(8 \times 5 = 40)$

- I. (a) Define Θ , O, Ω , o, ω notations with examples.
 - (b) State Master theorem and solve the recurrence T(n) = 9T(n/3) + n.
 - (c) What is amotized analysis and what are the techniques used in amotized analysis?
 - (d) Define a binomial heap. How will you represent a binomial heap?
 - (e) Write an algorithm for finding the transitive closure of a binary relation.
 - (f) What are the standard ways to represent a graph?
 - (g) Explain complexity class NP.
 - (h) Define NP-completeness.

PART B

 $(4 \times 15 = 60)$

- II. (a) Write an algorithm to search an element in a list using divide and conquer method and analyze it.
 - (b) Solve the recurrence T(n) = 2T(n/2) + n|gn.

OR

- III. (a) Compare and contrast dynamic programming and greedy method using examples.
 - (b) Explain back tracking method with example.
- IV. (a) Explain heap sort and analyze it.
 - (b) Trace the heap union of binomial heaps given in the figures.

- V. Show red black tree that result success by inserting the keys 41, 38, 31, 12, 19, 8 into an initially empty red back tree and show the result from successive deletion of keys in order 8, 12, 19, 31, 38, 41.
- VI. (a) Explain all pair shortest path algorithm and analyze it.
 - (b) Write an algorithm to find strongly connected components in a graph.

OR

- VII. Explain graph traversal algorithms with example.
- VIII. Discuss TSP and show that it is NP-complete.

OR

IX. Explain the performance bounds for approximate algorithm and discuss approximation algorithm for vertex cover.
