Code No.: 3267

[Max. Marks : 75

FACULTY OF ENGINEERING

B.E. 2/4 (E & EE / Inst) II Semester (Main) Examination, May/June 2011 **ELECTROMAGNETIC THEORY** Time: 3 Hours]

Note	: An	nswer all questions of Part – A. Answer five questions from Part – B.		
1.	State	PART – A (Marks : 2 e and explain Coulomb's law for electrostatic fields.	:5) 3	
2.		be point charges -2 nc, 3 nc and 4 nc are located at $(0, 0, 1)$, $(0, 1, 0)$ and $(0, 0)$, respectively. Find the energy in the system.	2	
3.	Find the work done in carrying a 5 – c charge from P(1, 2, – 4) to R (3, –5, 6) in an electric field $E = a_x + z^2$ ay + 2yza _z V/m.			
4.	Defi	ne Relaxation Time of a medium.		
5.	State	e and explain law of conservation of magnetic flux.	2	
6.	Calc	ulate the self-inductance per unit length of an infinitely long solenoid.	3	
7.	The conductivity of silver is 3×10^6 mho/m. If the skin depth is 1.5 mm, find the frequency of the wave.			
8.	A Plane wave of 16 GHz frequency and E = 10 V/m propagates through the body of salt water having ϵ_r = 100; μ_r = 1 and σ = 100 mho/m. Determine α , β and η .			
9.	Write	e the steps involved in finite element analysis.	3	
10.	Wha	t do you mean by equipotential line ?	2	
11.	(a) (b)	$ \begin{array}{c} \textbf{PART}-\textbf{B} & \textbf{(Marks: 50)} \\ \textbf{Determine D at (4, 0, 3) due to a point charge}-5\pi \ \text{mc at (4, 0, 0) and} \\ \textbf{a line charge } 3\pi \ \text{mc/m along the y-axis.} \\ \textbf{State and explain Gauss law for electrostatic fields.} \end{array} $		
12.	(a)	Verify whether the potential field $V = 2x^2 - 3y^2 + z^2$ satisfy Laplace's equation.	5	
	(b)	A spherical capacitor has inner radius 'a' and outer radius b and filled with a homogeneous dielectric with $\epsilon = \epsilon_0 k/r^2$. Show that the		
		capacitance of capacitor is $C = \frac{4\pi\epsilon_0 k}{b-a}$.	5	
CPL:-		contains 2 is seed.	\sim	

13.	(a)	Explain in detail magnetic scalar and vector potentials.	5
	(b)	For a current distribution in free space	5
		$A = (2x^{2}y + yz)a_{x} + (xy^{2} - xz^{3})a_{y} - (6xyz - 2x^{2}y^{2})a_{z} \text{ wb/m}$	
		(i) Calculate B (ii) Find the magnetic flux through a loop described by $x = 1$, $0 < y$, $z < 2$.	- Opposed
14.	(a)	Derive the wave equation for free space.	5
	(b)	State and explain Maxwell's equations for time variant fields in differential and integral forms.	5
15.	(a)	Explain Method of Moments Analysis.	5
	(b)	Explain the numerical solution of Laplace's equation.	5
16.	(a)	Plane n + 2y = 5 carries charge ρ_s = 8 nC/,m ² , determine E at (-1, 0, 1)	. 5
in the second	(b)	Calculate the self inductance per unit length of an infinitely long	
17.	Write	e short notes on :	10
	(a)	Boundary conditions for perfect dielectric materials.	
	(p)	Poynting theorem.	