

B. Tech. Degree IV Semester Examination April 2014

IT/CS/CE/SE/ME/EE/EB/EC/EI/FT 1401 ENGINEERING MATHEMATICS III (2012 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART A (Answer ALL questions)

 $(8 \times 5 = 40)$

- I. (a) $f(z) = z^n$, n any positive integer, show that f(z) is analytic and hence find its derivative.
 - (b) Show that the transformation $w = z^2$ maps the circle |z-1| = 1 into the cardioid $\rho = 2(1 + \cos \phi)$.
 - (c) Find the poles and residues of $f(z) = \frac{z^2 + z + 1}{(z-1)^2(z+2)}$.
 - (d) Evaluate $\int \tan z dz$, c is the circle |z| = 2.
 - (e) Form the partial differential equation by eliminating the function $f(x+y+z, x^2+y^2+z^2)=0$.
 - (f) Solve the partial differential equation $y^2p xyq = x(z-2y)$.
 - (g) Derive one dimensional heat equation.
 - (h) Using method of separation of variables solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, $u(x,0) = 6e^{-3x}$.

PART B

 $(4 \times 15 = 60)$

II. (a) If
$$f(z)$$
 is analytic show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \log |f(z)| = 0$ (7)

(b) Show that $V = e^x (x \cos y - y \sin y)$ is harmonic function. Find the analytic function f(z) for which V is the imaginary part. (8)

OR

- III. (a) Find the image of the region bounded by the lines x y < z and x + y > z under the mapping w = 1/z.
 - (b) Find the bilinear transformation which maps the points $z = \infty, i, o$ onto $w = o, i, \infty$. (4)
 - (c) Explain the transformation $w = \sin z$. (5)

IV. (a) Evaluate
$$\int_{c}^{z} \frac{z}{z^2 - 1} dz$$
, where c is

(i)
$$|z| = 1/2$$

(i)
$$|z| = 1/2$$

(ii) $|z-1| = 1/2$

(iii)
$$|z|=2$$

(b) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{(5-3\cos\theta)^2}$$
 using contour integration. (6)

V. (a) Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 as Laurent's series in (9)

(i)
$$|z| <$$

(ii)
$$1 < |z| < 2$$

(iii)
$$0 < |z-1| < 1$$

(b) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + 1)(x^2 + 4)}$$
 using contour integration. (6)

VI. Solve (3x5=15)

(i)
$$x(y^2-z^2)p-y(z^2+x^2)q=z(x^2+y^2)$$

(ii)
$$p^2 + q^2 = x + y$$

(iii)
$$z = \frac{1}{p} + \frac{1}{q}$$

OR

(3x5=15)VII. Solve

(i)
$$(D^3 - 2D^2D')z = e^{2x+y}$$

(ii)
$$\left(D^3 - 4D^2D' + 4DD'^2\right)z = \sin(3x + 2y)$$

(iii)
$$x^2p^2 + y^2q^2 = z^2$$

- Derive D-Alembert's solution of one dimensional wave equation. -VIII. (5) (a)
 - A string is stretched and fastened to two points l apart. Motion is started by (10)displacing the string in the form $y = a \sin\left(\frac{\pi x}{l}\right)$ from which it is released at time t=0. Show that the displacement of any point at a distance x from one end at time t is given by $y(x,t) = a \sin\left(\frac{\pi x}{l}\right) \cos\left(\frac{\pi ct}{l}\right)$

- Obtain the solution of 2 dimensional Laplace equation. (5)(a)
 - An insulated rod of length l has its ends A and B maintained at 0°C and 100°C (10)(b) respectively until steady state conditions prevail. If B suddenly reduced to 0°C and maintained at 0° C, find the temperature at a distance x from A at time t.

IX.