Reg. No. : \qquad
Name: \qquad
IV Semester B.Tech. (Regular/Supplementary/Improvement - Including Part Time) Degree Examination, May 2012 (2007 Admn. Onwards) PT 2K6/2K6EC/AEI 404 : SIGNALS AND SYSTEMS

Time: 3 Hours
Max. Marks: 100
Instruction : Answer all questions.
PART-A
Answer all questions :
I. a) Define an energy signal and check whether the following signal is an energy signal or not $x(t)=t u(t)$.
b) What is BIBO stability ? Prove the condition on $\mathrm{h}(\mathrm{t})$ for a system to be stable.
c) State and explain any 2 properties of CTFT.
d) What is aliasing effect ? How it can be avoided in a signal ?
e) Find the discrete Fourier series representation of a periodic sequence $x(n)=\{1,1,0,0\}$ with period $N=4$.
f) State and prove the convolution property of DTFT.
g) Write any 4 properties of Region of convergence.
h) State and prove the initial value theorem of z transform.
PART-B
II. a) If ' E ' is the energy of the signal $x(t)$ what is the energy of $x(2 t)$ and $x(t / 2)$.
b) Find the natural and total response of the system described by the differential equation:
$\frac{d^{2} y(t)}{d t^{2}}+\frac{6 d y(t)}{d t}+8 y(t)=\frac{d x(t)}{d t}+2 x(t) x(t)=e^{-t} u(t)$. The initial conditions
are $y\left(0^{+}\right)=2, \frac{d}{d t} y\left(0^{+}\right)=3$.
c) Test whether the following signals are periodic or not. If periodic find out the period:

$$
\begin{aligned}
& x(t)=\cos \left(\frac{\pi}{3}\right) t+\sin \left(\frac{\pi}{5}\right) t \\
& x(t)=\cos t+\sin \sqrt{2} t \text {. } \\
& \text { d) } x(t)=1, \quad 0 \leq t<1 \\
& e^{-t} \quad t \geq 1 \\
& 0 \text { Otherwise }
\end{aligned}
$$

Plot:
i) $x(2 t-3)$,
ii) $x(1.5 t-0.5)$
iii) $x(2-0.5 t)$.
III. a) State and prove any 2 properties of Hilbert transform.
b) Determine the impulse response $h(t)$ and output response $y(t)$ of the given differential equation with $i / p x(t)=e^{-2 t} u(t)$

$$
\frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+3 \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) .
$$

c) Find the energy spectral density of the signal $x(t)=e^{-2 t} \quad t \geq 0$.

$$
0 \quad t<0
$$

d) Find the Fourier series coefficients of periodic signal $x(t)=\left\{\begin{array}{ll}1 & |t|<T_{1} \\ 0 & T_{1}<|t|<T / 2\end{array}\right\}$.
IV. a) Find the discrete time Fourier coefficients for

$$
x(n)=1+\cos \left(\frac{2 \pi}{N}\right) n+2 \cos \left(\frac{4 \pi n}{N}+\frac{\pi}{3}\right)+4 \cos \left(\frac{6 \pi n}{N}+\frac{\pi}{4}\right)
$$

b) Find the inverse DTFT of the system $x\left(e^{i \Omega}\right)=\frac{\frac{2}{3} e^{-j \Omega}+5}{1+\frac{5}{6} e^{-j \Omega}+\frac{1}{6} e^{-2 j \Omega}}$.

OR

c) Find the DTFT of $x(n)=a^{-n} u(-n),|a|>1$.
d) State and prove the difference in time property of DTFS.
V. a) A LSI system is described by $y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=x(n)$
i) Determine the system function.
ii) Find the step response of the system.

OR
b) Find the inverse 2 transform of $X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}$ using power series expansion method for $|z|>1$ and $|z|<1$.

15

