

Reg. No. :

Name :

IV Semester B.Tech. (Regular/Supplementary/Improvement – Including Part Time) Degree Examination, May 2012 (2007 Admn. Onwards) PT 2K6/2K6EC/AEI 404 : SIGNALS AND SYSTEMS

Time: 3 Hours

Max. Marks: 100

Instruction : Answer all questions.

PART-A

Answer all questions :

- I. a) Define an energy signal and check whether the following signal is an energy signal or not x(t) = t u(t).
 - b) What is BIBO stability ? Prove the condition on h(t) for a system to be stable.
 - c) State and explain any 2 properties of CTFT.
 - d) What is aliasing effect ? How it can be avoided in a signal ?
 - e) Find the discrete Fourier series representation of a periodic sequence $x(n) = \{1, 1, 0, 0\}$ with period N = 4.
 - f) State and prove the convolution property of DTFT.
 - g) Write any 4 properties of Region of convergence.
 - h) State and prove the initial value theorem of z transform. (8×5=40)

PART – B

- II. a) If 'E' is the energy of the signal x(t) what is the energy of x(2t) and x(t/2).
 - b) Find the natural and total response of the system described by the differential equation :

$$\frac{d^2y(t)}{dt^2} + \frac{6 dy(t)}{dt} + 8y(t) = \frac{dx(t)}{dt} + 2x(t) \quad x(t) = e^{-t}u(t). \text{ The initial conditions}$$

are y (0⁺) = 2, $\frac{d}{dt}$ y (0⁺) = 3.
OR

P.T.O.

9

6

6

9

6

c) Test whether the following signals are periodic or not. If periodic find out the period :

$x(t) = \cos\left(\frac{\pi}{3}\right)t + \sin\left(\frac{\pi}{5}\right)t$	
$x(t) = \cos t + \sin \sqrt{2} t.$	
d) x (t) = 1, $0 \le t < 1$ e^{-t} $t \ge 1$ 0 Otherwise	
Plot: i) $x(2t - 3)$, ii) $x(1.5t - 0.5)$ iii) $x(2 - 0.5t)$.	
III. a) State and prove any 2 properties of Hilbert transform.	

- b) Determine the impulse response h(t) and output response y(t) of the given
 - differential equation with i/p $x(t) = e^{-2t} u(t)$

$$\frac{dy(t)}{dt} + 3y(t) = x(t).$$
OR

- c) Find the energy spectral density of the signal $x(t) = e^{-2t}$ $t \ge 0$. 7 0 t < 0
- d) Find the Fourier series coefficients of periodic signal $x(t) = \begin{cases} 1 & |t| < T_1 \\ 0 & T_1 < |t| < T/2 \end{cases}$. 8
- IV. a) Find the discrete time Fourier coefficients for

$$\mathbf{x}(\mathbf{n}) = 1 + \cos\left(\frac{2\pi}{N}\right)\mathbf{n} + 2\cos\left(\frac{4\pi\mathbf{n}}{N} + \frac{\pi}{3}\right) + 4\cos\left(\frac{6\pi\mathbf{n}}{N} + \frac{\pi}{4}\right).$$
 7

8

15

b) Find the inverse DTFT of the system
$$X(e^{j\Omega}) = \frac{\frac{2}{3}e^{-j\Omega} + 5}{1 + \frac{5}{6}e^{-j\Omega} + \frac{1}{6}e^{-2j\Omega}}$$
. 8

OR

- c) Find the DTFT of x (n) = $a^{-n} u (-n)$, |a| > 1. 7
- d) State and prove the difference in time property of DTFS.

V. a) A LSI system is described by
$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$$

i) Determine the system function.

5

- ii) Find the step response of the system. OR
- b) Find the inverse 2 transform of $X(z) = \frac{1}{1 1.5 z^{-1} + 0.5 z^{-2}}$ using power series expansion method for |z| > 1 and |z| < 1. 15