

M 23314

Reg. No.: .....

Name:.....

VI Semester B.Tech. Degree (Reg./Sup./Imp. – Including Part Time)
Examination, May 2013
(2007 Admn. Onwards)
PT 2K6/2K6 EC/AEI 604: DIGITAL SIGNAL PROCESSING

Time: 3 Hours Max. Marks: 100

## PART - A

- I. a) Explain the difference between Discrete Fourier Series (DFS) and Discrete Time Fourier Transform (DTFT).
  - b) x[n] denotes a finite-length sequence of length N. Show that  $x[((-n))_N] = x[((N-n))_N]$ .
  - c) Discuss what is meant by truncation and round off errors.
  - d) Obtain the direct form I realization of an FIR filter with impulse response

$$h(n) = \left(\frac{1}{2}\right)^n [u(n) - u(n-4)].$$

- e) What is meant by warping? Explain.
- f) Explain the desirable characteristics of window functions.
- g) What are the advantages of multirate signal processing?
- h) Explain about general purpose digital signal processor.

 $(8 \times 5 = 40)$ 

## PART-B

II. a) Let  $X(e^{j\omega})$  denote the Fourier transform of the sequence  $x[n] = \left(\frac{1}{2}\right)^n u(n)$ . Let y[n] denote a finite duration sequence of length 10 i.e. y[n] = 0, n < 0 and y[n] = 0,  $n \ge 10$ . The 10-point DFT of y[n] denoted by Y(K) corresponds to 10 equally spaced samples of  $X(e^{j\omega})$  i.e.  $Y[K] = X(e^{j2\pi K}/10)$ . Determine y[n].

OR

b) Given  $x(n) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ , find X(k) using DIT FFT algorithm.



3

15

III. a) Find the direct form I and direct form II realizations of a discrete time system

represented by transfer function H(z) = 
$$\frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}$$
.

OR

- b) i) Explain coefficient quantization in direct form realization of FIR fillies.
  - ii) Explain what is meant by dead bond.

IV. a) Design a digital butterworth filter that satisfies the following constraint using bilinear transformation. Assume T = IS.

$$0.9 \le \left| H(e^{J\omega}) \right| \le 1 \qquad 0 \le \omega \le \frac{\pi}{2}$$

$$\left| H(e^{J\omega}) \right| \le 0.2 \qquad 3\pi/u \le \omega \le \pi$$
15

OR

b) The desired frequency response of a low pass filter is given by

$$H_{d}(e^{J\omega}) = H_{d}(\omega) = \begin{cases} e^{-J3\omega}, & |\omega| < 3\pi/4 \\ 0, & 3\pi/4 < |\omega| < \pi \end{cases}$$
 15

Determine the frequency response of FIR filter if hamming window is used with N = 7.

- V. a) i) Explain different addressing modes of DSP processor with example. 7
  - ii) With neat diagram explain address generation unit of DSP architecture. 8
  - b) Explain the principle of multirate DSP.