Con. 3892-12.

SE | ETRX | III (Rem) 24/5/2012 Digital system Design GN-5294

(3 Hours) [Total Marks: 100

N.E	(Question No. 1 is compulsory and solve any four from remaining six questions. In all attempt five questions. Figures to the right indicate full marks. Assume data if necessary and justify the same. 	
1.	Ans	(a) Construct Hamming code for BCD 0110. Use even parity. (b) Explain the term 'metastability', its causes and effects. (c) Define the following terms:— (i) Fan out (ii) Noise margin (iii) Noise margin (iii) Fan in active pull up (d) Implement X-NOR operation using only minimum number of NAND gates.	5 5 5
2.	(a)	Implement the following expression using IC 74138, 3:8 active low decoder and additional gates. $F(A,B,C,D) = \prod M \{0, 6, 7, 8, 12, 13, 14, 15\}$	10
	(b)	Find reduced SOP form using K-maps, and implement using universal gates :— (i) $f(A, B, C, D) = \Sigma m \{ 2, 3, 6, 7, 8, 9, 12, 13 \} + d(4, 10, 14)$ (ii) $f(A, B, C, D) = \prod M \{ 0, 6, 7, 8, 12, 13, 14, 15 \}$	10
3.	(a) (b)	Simplify the following using Quine Mc-Clusky method. $f(A, B, C, D, E) = \Sigma \ m \ \{0, 1, 9, 15, 24, 29, 30\} + d(3, 11, 31)$ Implement the following using single IC 74151 and some gates. (i) $f1 = \Sigma \ m \ \{1, 2, 4, 7, 10, 13, 14\}$ (ii) $f2 = \Sigma \ m \ \{1, 4, 5, 7, 8, 12, 13, 15\}$	10
4.	(a)	Determine whether any static 0 or static 1 hazards exist in the following Boolean expression. Identify where the hazards are and what must be done to avoid them. $f(A,B,C,D) = \Sigma \ m \ \{ \ 5, \ 7, \ 8, \ 9, \ 10, \ 11, \ 13, \ 15 \ \}$	10
	(b)	Explain and draw asynchronous counter for the following:— -4- 5-6-7-8-9-10-11-12-13-14-15-	10
5.	(a) (b)	Design and explain one digit BCD adder using IC 7483 and NAND gates. Write short notes on: (i) ALU (ii) programmable logic unit	10 10
6.	(a) (b)	Construct twisted ring counter using IC 74194 and draw the output wave-form. Draw and explain a 9 bit even parity checker using IC 74180.	10 10
7.	(a) (b)	Implement binary to BCD converter using universal gates. Explain the following:— (i) Self complementing codes, with example. (ii) The term 'noise margin' and its value for TTL and CMOS families.	10 10