Con. 5861-10.

BELETRX/Semult / Rev Filter Design (REVISED COURSE)

(3 Hours)

[Total Marks: 100

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions out of the remaining six questions.
 - (3) Draw suitable diagrams and graphs wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (a) Explain the difference between Butterworth, Chebyshev and Elliptical filters. 10 Mention their merits and demerits. Derive expression for the order of Butterworth filter.
 - (b) What is Frequency Warping? When do we use Bilinear transformation 10 technique? What is an antialiasing filter? Why it is used?
- (a) Explain the working principle of a switched capacitor filter. What are the 10 2. necessary conditions for the implementation of a switched capacitor filter. What type of switches are used and what are its advantages? Explain its implementation in a typical op-amp based integrator.
 - (b) Using bilinear transformation design a Digital Bandpass Chebyshev 10 filter with the following specification α_p = 2 dB in the passband, $(950 \text{ Hz}) \le f \le (1150 \text{ Hz}) \alpha_s = 20 \text{ dB}$ in the stopband, $0 \le f \le (550 \text{ Hz})$ and $(2150 \text{ Hz}) \le f \le \infty$ sampling frequency f = 8 KHz.
- (a) Write difference between IIR and FIR filter. Explain frequency sampling 10 method using suitable example.
 - (b) Convert the following pole-zero IIR filter into a lattice-ladder structure:-10 y(n) = -0.9 y(n-1) + 0.8 y(n-2) - 0.5 y(n-3)+ x(n) + 2x(n-1) + 3x(n-2) + 2x(n-3)
- (a) Explain a Linear phase FIR filter for the case of constant phase delay and 10 group delay, using suitable equations. Draw Impulse response sequences of symmetric sequences for (i) N odd and (ii) N even.
 - 10 (b) A low pass digital filter has following specifications:- $0.8 \le |H(e^{jw})| \le 1$ for $0 \le w \le 0.2 \pi$ $|H(e^{jw})| \le 0.2$ for $0.6 \pi \le w \le \pi$

Determine the order of Chebyshev and Butterworth filter to meet the following specification.

- (a) What is an adaptive filter? What are its advantages? Which type of problem 10 5. can be solved using adaptive filter.
 - (b) Convert a second order Butterworth filter (Low Pass) to Digital filter using 10 impulse invariant techniques.

4.	· ·	Explain a Linear phase FIR filter for the case of constant phase delay and group delay, using suitable equations. Draw Impulse response sequences of symmetric sequences for (i) N odd and (ii) N even. A low pass digital filter has following specifications:— $0.8 \leq H (e^{jw}) \leq 1 \qquad \text{for } 0 \leq w \leq 0.2 \ \pi \\ H (e^{jw}) \leq 0.2 \qquad \text{for } 0.6 \ \pi \leq w \leq \pi$ Determine the order of Chebyshev and Butterworth filter to meet the following specification.	10
5.		What is an adaptive filter? What are its advantages? Which type of problem can be solved using adaptive filter.	
	(0)	Convert a second order Butterworth filter (Low Pass) to Digital filter using impulse invariant techniques.	10
6.	(a)	Design a Butterworth bandstop filter with 2 dB passband edges of 30 Hz and 100 Hz and 40 dB stopband edges of 50 Hz and 70 Hz.	10
	(b)	OR	10
		Explain the method of matched Z-transform.	
7.		Explain Decimation and Interpolation. When it is required? Take suitable examples.	10
	(b)	Explain subband coding (Or) Quadrature mirror filtering.	10
