III Semester Full Time
Time : 3 Hours
Answer All Questions
Max.marks: 100
PART-A
(10x $2=20$ marks)

1. Define Noise margin in logic inverter .
2. Briefly explain thermal stability.
3. Define CMRR of a differential amplifier .
4. Define class C operation and draw a class C power amplifier.
5. What is meant by body effect and how it is taken care in MOSFET analysis .
6. Find the aspect ratio of NMOS inverter shown

7. A CE amplifier without feedback has $h_{f e}=212, h_{i e}=5.6 \mathrm{~K}, R_{s}=3.2 \mathrm{~K}, R_{c}=10 \mathrm{~K}$, $\mathrm{R}_{\mathrm{L}}=7.8 \mathrm{~K} \mathrm{C}_{\mathrm{be}}=21 \mathrm{pf}, \mathrm{C}_{\mathrm{bc}}=3.7 \mathrm{pf}$ and wiring capacitance $=4 \mathrm{pf}$. Find the total capacitance at input and output ports of the amplifier.
8. Write the expression of voltage gain of circuit shown.

9. Design a JFET self bias circuit to have $V_{g s Q}=-2 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=2 \mathrm{~mA}$ and $V_{D S Q}=6 \mathrm{~V}$.Assume $V_{D D}=12 \mathrm{~V} \mathrm{~V}_{\text {gs }(0 f f)}=-4 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DSS}}=8 \mathrm{~mA}$.
10. Draw the dc circuit and ac circuit of the circuit shown.

$$
\text { (} 5 \times 16=80 \text { marks) }
$$

11(i) Locate the operating point by drawing the dc and ac load lines of the circuit Shown in Fig.(1) , also find the maximum power delivered to the load R_{L}.
(ii) Perform stability analysis of collector to base circuit and hence derive for all stability factors .

前 1

12(a)(i) Explain class B power amplifier with circuit diagram. Derive for its efficiency, also find for what fraction of input signal , power dissipation is maximum. (10)
(ii) Design a class A power amplifier shown to deliver ac power to $R_{L}=300 \Omega$ at an efficiency of 16%. Calculate the input power, ac power output and power dissipated.

(OR)
(b)(i) Define f_{α} and f_{β}. Derive for f_{α} and f_{β}
(iii) Calculate the Midbad gain, lower cut off frequencies, higher cutoff frequencies for the circuit shown.

$$
\begin{aligned}
& c_{b e}=35 \mathrm{pf} \\
& c_{b c}=4 \mathrm{pf} \\
& h_{f e}=150 \\
& h_{i e}=3.82 \mathrm{k}
\end{aligned}
$$

13 (a)(i) For the NMOS inverter shown, calculate the noise margin in high and low state. Draw the VTC of the inverter indicating the points $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}$ and V_{OH} Also mark the operating point of the Inverter in ON and OFF states.

$$
\begin{gather*}
\ln C_{0}=25 \mu \mathrm{~A} / \mathrm{N}^{2} \tag{10}\\
V_{t}=1 \mathrm{v} \\
\frac{\omega}{L}=\frac{2.06}{1}
\end{gather*}
$$

(ii) Draw a BIMOS cascode amplifier and its equivalent circuit. Derive the expression for its A_{V}

(ii). The input and output of an LTI system is described by the following differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6=2 x(t)
$$

Determine the impulse response of the LTI system. What is the response of the system if the input to the system is given by $x(t)=t e^{-3 t} u(t)$.
(OR)
(b) (i)Consider a causal LTI svstem with transfer function $u(s)=\frac{1}{s^{2}+2 s+2} \cdot$ Let the inipui xíti to the LTI system is given by $x(t)=e^{-3 t} u(t)$. Determine the response $y(t)$ and impulse response $h(t)$. (8)
(ii) Consider an LTI system with an impulse response $h(t)=t e^{-3 t} u(t)$ and an input $x(t)$ defined by $x(t)=t e^{-4 t} u(t)$. Use fourier transform to determine the frequency response $Y(j \omega)$) and the response $y(t)$.
14. (a) (i).The spectrum $X(j \omega)$ of a bandlimited signal $x(t)$ is shown in the figure below. Determine and plot the spectrum of sampled signal if the signal is sampled at the rates $(1) \omega_{s}=4 \omega_{\mathrm{m}}$ and (2) $\omega_{\mathrm{s}}=0.5 \omega_{\mathrm{m}}$.
(ii). Determine the signal corresponding to the Fourier transform given by

$$
X\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} \delta\left(\omega-\frac{\pi}{4} \mathrm{k}\right)
$$

(OR)
(b) (i).Consider the signal $x[n]$ given below. Determine its z-transform $X(z)$, draw the ROC and mark the poles.

$$
\mathrm{x}[\mathrm{n}]=\left\{\begin{array}{cl}
\left(\frac{1}{5}\right)^{n} \cos \left(\frac{\pi}{8} n\right) & , n \leq 0 \tag{8}\\
0 & , n>0
\end{array}\right.
$$

(ii). Determine the Fourier transform of the signal $x[n]$ given by

$$
x[n]=\left\{\begin{array}{c}
n,-4 \leq 0 \leq 4 \tag{8}\\
0, \text { otherwise }
\end{array}\right.
$$

Q15. (a)(i).Consider an $L T 1$ system with impulse response $h[n]=\frac{\sin \left(\frac{\pi n}{4}\right)}{\pi n}$. Determine the response $y[n]$ for the input $x[n]$ defined by $x[n]=\delta[n+2]+\delta[n-1]$ by computing the Fourier transform.
(ii). Consider a discrete time LTI system with impulse response $h[n]=\left(\frac{1}{4}\right)^{n} u[n]$. Use Fourier transform to determine the response $y[n]$ for the input signal $x[n]=(-1)^{n}$.

(OR)

(b)(i). Determine whether an $L T$ system described by the transfer function $H(z)=\frac{z-\frac{1}{4}}{z^{2}+\frac{2}{3} z+\frac{1}{9}}$ is causal and/or stable without computing z transform. State with proof.
(8)
(ii). Consider a causal LTI system whose input $x[n]$ and output $y[n]$ are related by
$3 y[n-2]+4 y[n-1]+4 y[n]=x[n]$. Determine system transfer function $H(z)$. Using $H(z)$, determine the step response of the given causal LTI system.
(8)

