Time: Three Hours]

[Maximum Marks: 75

FACULTY OF INFORMATICS

B.E. 2/4 (IT) First Semester (Supplementary) Examination, June/July 2011 DISCRETE MATHEMATICS

Note: — Answer ALL questions from Part A. Answer any FIVE questions from Part B.

	PART—A (Marks: 25)	
1.	Construct a Truth Table for $(p \lor q) \to (p \land q)$.	2
2.	Express the statement using quantified form: "Every one who is healthy can do all kir work".	nds of 2
3.	Define Generalized pigeon hole principle.	2
4.	Prove that $\sqrt{2}$ is an irrational number.	2
5.	Define partially ordered set.	2
6.	Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ be the universal set and $A = \{1, 3, 5, 7, 8, 9, 10\}$. Show how A and B can be represented on a computer?	7, 9}, 3
Ź.	Find the solution of the recurrence relation:	
	$a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$, $a_1 = 7$.	3
8.	Define Adjacency matrix and Incedency matrix.	3
9.	Find the number of Derangements of a set with 4 elements.	3
10.	Use Karnaugh map to minimize $x\overline{y} + \overline{x}y + \overline{x}\overline{y}$.	3
	PART—B (Marks: 50)	
11.	(a) Show that the propositions $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equive	alent.
		-5
	(b) Show that $[\exists P \land (p \lor q)] \rightarrow q$ is a tautology.	5
12.	(a) Find the Big-O Estimate for n!.	5
HVS-	817 1 (0	Contd.)

- (b) Use mathematical Induction to prove that $n^3 n$ is divisible by 3 whenever n is a positive integer.
- 13. (a) Find the solution of the recurrence relation $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ with the initial conditions $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$.
 - (b) Find the solution of the recurrence relation:

$$a_n = 3a_{n-1} + 2n$$
 with initial condition $a_1 = 3$.

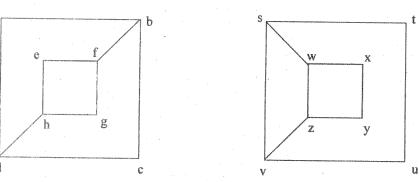
- 14. (a) Find the number of Integers from 1 to 1000 inclusive are divisible by either 5, 6 (or) 8.
 - (b) Find the number of non negative integer solutions:

$$x_1 + x_2 + x_3 = 11$$
, where $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$.

- 15. (a) Show that the relation R = {(a, b) / a ≡ b (mod m)} is an equivalence relation on the set of integers.
 - (b) Show that "greater than or equal" relation (≥) is partial ordering on the set of integers. 5
- 16. (a) Define tree, spanning tree and minimum spanning tree.
 - (b) Find the sum of products expansion for the function

$$F(x, y, z) = (x + y)\overline{z}.$$

17. (a) Determine whether the two graphs are Isomorphic (or) not:



(b) Explain about Euler circuits and Hamilton paths.

5