36, 50 Hz, 1500 r.p.m. squirrel cage inductor motor use the following data:

Average flux density in the air gap = 0.46 wb/m^2

Ampere conductor per meter of armature periphery = 22000

Full load efficiency = 83%

Full load p.f. = 0.84 lagging

EE - 603

B.E. VI Semester

Examination, December 2014

Electrical Machine Design

Time: Three Hours

Maximum Marks: 70

Total No. of question 10. Note: i)

Attempt one from each unit.

Unit - I

Explain procedure of mathematical formulation of electrical machine design problem in CAD.

b) What are the various advantage of CAD?

OR

Explain NPL method of solution of design problem. 7

Describe flow chart of CAD of rotating electrical machine.

Unit - II

- Explain the objective function for the optimal design of D.C. machine.
 - Give the algorithm for optimal design of D.C. machine. 7

EE-603

OR

- 4. a) Deduce from the first principle an expression connecting main dimension of the armature of D.C. machine.
 - b) Find the suitable number of poles and the diameter of the core of a 400 kW, 550 V, 180 r.p.m. D.C. generator having 92% efficiency. Assume an average flux density in the air gap of about 0.6 wb/m² and ampere conductor per meter to be 35000.

Unit - III

- 5. a) Explain the constraint functions for optimal design of power transformer. 7
 - b) Give the algorithm for optimal design of power transformer.

OR

- 6. a) Distinguish between distribution and power transformer.

 Also explain why power transformers are designed to have maximum efficiency at or near full load.
 - b) State and discuss the different types of windings used in core type power transformer. 7

Unit - IV

7. a) Give the mathematical formulation for the optimal design of 3φ alternator.7

b) Give the algorithm for optimal design of 3ϕ alternator. 7

OR

- 8. a) Derive the output equation of synchronous machine and explain various design parameters used there in. 6
 - b) Design the stator core for 10 MVA, 11 kV, 50 Hz 3φ,
 2pole, turbo alternator based on the following information:

Specific magnetic loading Bay = 0.63 tesla

Specific electric loading = 4,8000 amp/cond/m

Peripheral speed = 120 m/sec

Length of air gap lg = 2 cm

Stator winding factor kw = .955

Unit - V

- a) Explain the constraint functions for optimal design 3φ induction machine.
 - b) Give the algorithm for optimal design of 3φ induction machine.

OR

- 10. a) Deduce the expression for output equation of 3φ induction motor.
 - b) Find the main dimensions, no. of stator ferns, size of conductor and number of stator slots of a 5 H.P., 400V