

Seat	
ocai	
No	
110.	

F.E. (Semester – I) Examination, 2012 APPLIED SCIENCE – I Physics (2008 Pattern)

Time : 2 Hours

Max. Marks : 50

[4161] – 103

Instructions: 1) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6. 2) Neat diagrams must be drawn wherever necessary. 3) Black figures to the **right** indicate **full** marks. 4) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is **allowed**. 5) Assume suitable data, if **necessary**. **Constants** : $h = 6.63 \times 10^{-34}$ J.sec. $c = 3 \times 10^{-34}$ J.sec. $c = 3 \times 10^{-31}$ M/S $e = 1.6 \times 10^{-19}$ C $m_e = 9.1 \times 10^{-31}$ kg

- A) Deduce an expression for the displacement produced when an electric field acts perpendicular to electron motion. What is deflection sensitivity? Give an expression for the deflection sensitivity in this case.
 - B) Draw a neat labelled diagram of Michelson's interferrometer and explain with necessary theory how it can be used to measure the wavelength of monochromatic light.
 - C) A wedge shaped air film having an angle of 40 seconds is illuminated by monochromatic light and fringes in reflected system are observed through a microscope. The distance between consecutive bright fringes was measured as 0.12 cm. Calculate the wavelength of light.

7

6

4

L -			
	2. A	Draw a neat labelled diagram showing interference of light in a transparent thin film of uniform thickness. Write down only the conditions for maximum and minimum intensity of light in reflected system. Explain the use of thin film as antireflecting coating.	7
	В	Explain the principle, construction and working of Bain bridge mass spectrograph with neat diagram.	6
	С	In Newton's ring experiment, the diameter of 15 th dark ring was found to be 0.590 cm and that of 5 th dark ring was 0.336 cm. If the radius of curvature of plano convex lens is 100 cm, calculate the wavelength of light used.	4
	3. A	Give the theory of plane transmission grating. Obtain the conditions for maxima and minima.	7
	В	What is piezo-electric effect ? Draw a neat diagram and explain the working of piezoelectric generator for the production of ultrasonic waves.	6
	С	A slit of width $2\mu m$ is illuminated by light of wavelength 6500A°. Calculate the angle at which the first minimum will be observed.	4
	4. A	State Rayleigh's criterion of resolution. Hence deduce an expression for resolving power of grating.	7
	В	Explain echo sounding technique. Discuss any two applications of ultrasonics based on this technique.	6
	С	Monochromatic light from laser of wavelength 6238A° is incident normally on a diffraction grating containing 6000 lines/cm. Find the angles at which	
		the first and second order maximum are obtained.	4

[4161] - 103

-2-

	-3-	-	[4161] – 103
5. A)	What is double refraction ? Explain it c	on the basis of Huygen's wa	ave theory. 6
B)	With a neat labelled diagram, explain th Obtain the betatron condition.	ne construction and working	of betatron. 6
C)	Calculate the thickness of doubly refine the phase difference of π radians between $\mu_0 = 1.55, \mu_e = 1.54$.	racting crystal required to in O and E rays. Given that γ	introduce a ι = 6000A°, 4
6. A)	What is nuclear fusion ? Give an according cause of stellar energy.	ount of proton-proton cycle	as the 6
B)	What are retardation plates ? What an their thickness.	re their types ? Obtain exp	ression for 6
C)	If the frequency of oscillator applied to must be the magnetic flux density to a	o the dees of cyclotron is 9 accelerate α -particles ?	MHz, what
	Given : $m_{\alpha} = 6.643 \times 10^{-27} \text{ kg } q_{\alpha} = 3.2$	2×10 ^{−19} c.	4

B/I/12/18,105