Reg. No.

B. Tech. Degree V Semester Special Supplementary Examination August 2015

EC/EI 1505 ANALOG AND INTEGRATED CIRCUITS

(2012 Scheme)

Maximum Marks: 100 Time: 3 Hours

PART A (Answer ALL questions)

 $(8 \times 5 = 40)$

- Explain the concept of virtual ground and hence derive the expression for gain in an I. inverting amplifier.
 - State how practical integrator is different from theoretical circuit, with relevant sketches.
 - What is a regenerative comparator? Explain. (c)
 - Describe how triangular waveforms are generated using op-amp, with neat circuit
 - (e) Design a phase corrector circuit with a lag output.
 - **(f)** What is a switched capacitor filter? Explain.
 - What are regulators? Explain the classification of regulator ICs. (g)
 - How to convert a 555 timer into an astable multivibrator to generate square waves of (h) period 10 m sec? Explain its operation.

PART B

 $(4 \times 15 = 60)$

List the characteristics of an ideal op-amp. II. (a) Derive the expressions for the gain, input and output resistances of a voltage series (10)(b) feedback op-amp configuration, with relevant circuit diagrams.

- (10)Derive the gain equation for a differential amplifier using two and three op-amps. III. (a) (5)
 - (b) Define the terms (i) slew rate (ii) SVRR.
- IV. Using op-amp IC, design a log and antilog amplifier. (15)
- Draw and explain the operation of a full wave precision rectifier. (5) V. (a)
 - Explain in detail about op-amp RC phase shift and wien bridge oscillators with neat (10)(b) circuit diagrams.
- (10)Derive the transfer functions of first and second order low pass and high pass VI. Butterworth filters.
 - (5) Design a first order wide band pass filter having $f_L = 500 \, Hz$, $f_H = 4.5 \, KHz$ and pass band gain of 6. Find the value of Q.

OR

- Explain in detail different techniques involved in analog to digital and digital to analog (15)VII. conversion.
- Draw and explain the functional diagram of 723 regulators. Using the functional (15)VIII. diagram, explain the operation of a low voltage regulator with current fold back and high voltage regulator.

OR

Explain with neat block diagram the operating principle of NE/SE 565 and discuss in (15)IX. detail any two applications of it.