FACULTY OF INFORMATICS

B.E. 3/4 (IT) II-Semester (Main) Examination, May / June 2011

Subject : Advanced Computer Architecture (Elective - I)

Time: 3 Hours Max. Marks: 75

Note: Answer all questions of Part-A and answer any **Five** questions from Part-B.

PART-A (25 Marks)

•	PART-A (25 Marks)	
1.	What are Bernstein's conditions for parallelism?	2
2.	Differentiate between static and dynamic scheduling.	3
3.	Describe the merits and demerits of CISC and RISC architectures.	3
4.	What are the five types of data dependencies?	2
5.	What are the reasons for cache inconsistency?	3.
6.	What are the different vector instruction types? Value College of Engine	2
7.	Describe about local and global optimizations.	3
8.	Describe about macrotasking, microtasking and auto tasking.	3
9.	What are architectural development tracks?	2
10.	Describe the explicit and implicit parallelisms.	2
	PART-B (50 Marks)	
11.a)	What are the system attributes for performance?	3
b)	Describe the architecture of a vector super computer.	7
12.a)	Describe the course level, fine level and medium level of parallelism.	3
b)	With a diagram, explain the design of a cross bar switch.	7
13.a)	Describe the concept of overlapping register windows for faster execution.	4
b)	Describe the three properties of memory hierarchy, namely, inclusion, coherence and locality.	6
14.	For the following reservation take, calculate the collision vector, draw the State diagram and calculate average latency in cycles.	10
	1 2 3 4 5 6 7 8 S ₁ X X X	

S₂ X X

15.a)	Differentiate between superscalar and super pipeline executions.	4
b)	With a diagram, describe wired barrier synchronization.	6
16.a)	Describe the different language features for parallelism.	4
b)	Explain about write back, write through and write invalidate policies for cache consisting.	6
17.a)	What are the domain decomposition techniques for swapping programs into multicomputers?	4
b)	Describe the various synchronization mechanisms for multiprocessing.	6

190 SSN 430 Mag 1000 00