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UNIT 1 AND 2
Logarithmic rule chart 
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Sequence and Series formula

Arithmetic Progression: 
5,10,15...n
General term tn= a (n -1)+ d
where:
a: start term (5)
common difference d = Difference of any 2 consecutive no. =
10 -5 = 5 

Geometric progression

21,22,23...2n

General term tn= arn-1

where:
a: start term (5)

r: Rate of growth = Division of any 2 consecutive no. = 

23 /22  = 2
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Sum of Arithematic Series=n
2

[2a(n−1)d ] ( or ) n
2

[ first term+last term ]

Sum of Gemoetric series=a
(rn−1)
(r−1)

if r != 1

Sum of Gemoetric series (if r = 1) = na

Sum of Gemoetric series  (if -1 < r < 1 )= a
(1−r)

Special Series

1+2+3 ...n= (n(n+1))
2

12+22+32 ...n= (n(n+1)(2n+1))
6

13+23+33 ...n3={
(n(n+1))

2
}
2

sum of odd numbers=n2

sum of odd numbers with last term L=(
(L+1)

2 )
2

∑
j=l

n

(k)=(n−l)k

Reference area. This will help you to analyze some of the
algorithms presented in this paper and also help in deep
dive of the subject.

The reference area sums are mostly based on  this playlist
Credits: Abdul Bari YouTube channel.

I) Time complexity of for loops
1) for i=0 to n  step i = i +1 (or i = i -1) //executes n+1
times

print(i) //executes n times
end for
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time complexity is o(N)

2)for i=0 to n  step i = i +2 (or i = i -1) //executes n+1 
times

print(i) //executes n /2times
end for

time complexity is o(N)
note: only take the part with N not the constants

3) for i=0 to n  step i = i +1 (or i = i -1) 
for j=0 to i  step j =j +1

print(i) //executes n times
end for

   end for

The sample execution is given below:

i j no of times of
execution

0 (0) 0

1 0
(1) 1

2
0
1
(2)

2

3

0
1
2
(3)

3

n
0
.
.
n

n

Considering red colored(3rd one) column let us calculate 
the time complexity of the equation:
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1+2+3+4+5... n = (n(n+1))/2 = (n2+1)/2
take only n2 
therefore o(n2) is the time complexity

4)for i=0 ; p<= n  step i = i +1  
p = p+1

   end for

Note: the algorithm repeats when p<=n so therefore it is 
not running n times. it is  running k times.

i p
1 1
2 1+2
3 1+2+3
4 1+2+3+4
k 1+2+3 ... k

Assume:
p > n
p = (k(k+1))/2 

(k(k+1))/2 > n
we assume k2 roughly

k2 > n

k > o(n1/2)

(square root of n)

5) for i=0 ; i < n  step i = i * 2  
print(i) 

end for
Tracing out i value
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note: that the i multiplies until it is equal to n so that 
it has to multiply k times

i
1 *  2 = 2
2 *2 = 22

23

24

...
2k

Assume i >= n

i = 2k 

2k =n

therefore
k = log 2 n
time complexity is o(log N) (log 2 n is also denoted as log 
n)

Important points:
 log n can give float value
 in that case you can get the ceil value of the answer
 eg : ceil of 2.2 is 3 (take the smallest next integer 

greater than 2.2)

6) for i=n ; i >= 1  step i = i / 2  
print(i) //executes n times

end for
i
n
n/2
n/22
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n/23

n/24

...
n/2k

Assume i <1

n/2k < 1
2k =n

therefore
k = log 2 n

7)  
for i=0 to n  step i = i +1 

print(i)  // runs n times
end for

 for j=0 to n  step j =j +1
print(j) // runs n times

end for
there fore  time complexity will be: n+n=2n = n (only take 
the part with n no need coefficients)

8) 
 for i=0 ; i < n  step i = i * 2  

p++ // runs log n 
end for

for j=0 ; j<= p  step j = j* 2  
print(j) // runs for log p times since it runs until j 
<p (refer 5th case)

end for
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from the above W.K.T
p  = log n 

therefore log ( log n) is time complexity of this.

9)
for i=0 ; i < n  step i = i++ 
//takes n time to execute

for j=0 ; j<n  step j = j* 2  
// takes n x log n time to execute

print(j) // takes n x log n time to execute

end for
end for 
therefore time complexity is n log n ( add up all and do 
not consider coefficients of n)

10) 
 for i=0 ; i < n  step i = i * 3 

print(i)
end for

i
1 *  3 = 3
3 *3 = 33

33

34

35

...
3k

Assume i >= n

3k =n

therefore
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k = log 3 n
(just for your knowledge)

Definition of Algorithm:  An algorithm is any well-defined
computational procedure that takes some value, or set of
values, as input and produces some value, or set of values,
as output. An algorithm is thus a sequence of computational
steps that transform the
input into the output.

Analysis of Algorithm:

Analysis  of  algorithm  is  the  process  of  analyzing  the
problem-solving capability of the algorithm in terms of the
time  and  size  required  (the  size  of  memory  for  storage
while  implementation).  However,  the  main  concern  of
analysis of algorithms is the required time or performance.
Generally, we perform the following types of analysis −
 Worst-case − The maximum number of steps taken on any
instance of size a.

 Best-case −  The  minimum  number  of  steps  taken  on  any
instance of size a.

 Average case − An average number of steps taken on any
instance of size a.

 Amortized − A sequence of operations applied to the input
of size a averaged over time.

Dive into basics of insertion sort:

Insertion sort is a very simple method to sort numbers in
an ascending or descending order. This method follows the
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incremental method. It can be compared with the technique
how cards are sorted at the time of playing a game. The
numbers, which are needed to be sorted, are known as keys.
Here is the algorithm of the insertion sort method.

Algorithm: Insertion-Sort(A) 
1. for j = 2 to A.length 
2.   key = A[j] 
3.   i = j – 1 
4.   //Insert A[ j ] into the sorted sequence
5.  while i > 0 and A[i] > key 
6.      A[i + 1] = A[i] 
7.   i = i -1 
8.   A[i + 1] = key

We use loop in-variants to help us understand why an 
algorithm is correct. We
must show three things about a loop invariant:

• Initialization: It is true prior to the first iteration
of the loop.

• Maintenance: If it is true before an iteration of the 
loop, it remains true before the next iteration.

• Termination: When the loop terminates, the invariant 
gives us a useful property that helps show that the 
algorithm is correct.

For Insertion sort:
Initialization: We start by showing that the loop invariant
holds before the first loop iteration, when j = 2. 1 The
sub-array A[1 . . j − 1], therefore, consists of just the
single element A[1], which is in fact the original element
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in A[1]. Moreover, this sub-array is sorted (trivially, of
course), which shows that the loop invariant holds prior to
the first iteration of the loop.

in short
Prior to the loop j =2 ->  A[1.. j-1] = A[1] which contains
only the A[1.. j-1] elements (of which there is only one)
and since there is only a single element they are trivially
sorted.

Maintenance: Next, we tackle the second property: showing
that  each  iteration  maintains  the  loop  invariant.
Informally, the body of the outer for loop works by moving
A[ j − 1], A[ j − 2], A[ j − 3], and so on by one position
to the right until the proper position for A[ j ] is found
(lines 4 7), at which point the value of A[ j ] is inserted
(line 8). A more formal treatment of the second property
would require us to state and show a loop invariant for the
“inner” while loop. this point, however, we prefer not to
get bogged down in such formalism,and so we rely on our
informal analysis to show that the second property holds
for the outer loop.

in short:

The outer for loop selects element A[ j] and positions it
properly  into  A[1..  j-1]  via  the  while  loop.  Since  the
array A[1.. j-1] began sorted, inserting element A[j] into
the proper place produces  A[1..  j] in sorted order (and
contains the first j elements).

Termination:

Finally, we examine what happens when the loop terminates.
For insertion sort, the outer for loop ends when j exceeds
n, i.e., when j = n + 1. Substituting n + 1 for j in the
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wording of loop invariant, we have that the sub array A[1 .
. n] consists of the elements originally in A[1 . . n], but
in sorted

in other words: 
The loop terminates when  j=  n+1 ⇒  A[1..  j-1] =  A[1.. (
n+1)-1] =  A[1..  n] which since the array remains sorted
after each iteration gives A[1.. n] is sorted when the loop
terminates (and contains  all the original elements) ⇒ the
entire original array is sorted.

Analysis
Run time of this algorithm is very much dependent on the 
given input.

If the given numbers are sorted, this algorithm runs in
O(n) time. If the given numbers are in reverse order, the
algorithm runs in O(n2) time.

Lets see how to derive those here

For  all  analysis  in  this  course  we  assume  that  the
algorithm will be implemented by a program run on a generic
computer, i.e. single processor with random access memory
(parallel algorithms are beyond the scope of this course
but  are  extremely  important  in  today's  computing
environments).

We  will  define  the  input  size,  n,  to  typically  be  the
number of elements in the input set (but it could represent
the number of bits in a representation or other appropriate
enumeration).  The  running  time will  then  be  the  total
number of execution steps as a function of n the algorithm
takes to complete. We will assume that each line of pseudo

13



code executes in a  constant amount of time (although that
amount may vary from line to line). Thus we multiply the
(constant) time each line takes to execute by the number of
times the line executes to find a cost per line and then
sum the costs of all lines to give the  run time of the
algorithm.

For insertion sort we will define a variable tj to be the
number of times the while loop test is performed (which
will  be  one  more  time  than  the  body  of  the  loop  is
executed) where j =2,3,..., n with n = A.length.

Statement Cost Times Reason
1. for j = 2 to A.length C1 n Since

comparison
occurs n times

2.   key = A[j] C2 n − 1 The loop exits
at  nth

comparison so it
runs  n -1

3.   i = j – 1 C3 n − 1 ,,
4. //Insert A[ j ]into the
sorted sequence

C4 n − 1 Comment has cost
of running  0

5.while i > 0 and A[i] 
>key

C5 ∑
j=2

n

(T j)
Amount of
comparison

6.   A[i + 1] = A[i] C6 ∑
j=2

n

(T j−1) Amount of  swaps

7.   i = i -1 C7 ∑
j=2

n

(T j−1) ,,

8.   A[i + 1] = key C8 n − 1 Same as 2
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 General Run Time
The run time for insertion sort can then be written as

T (n)=C1n+(C2(n−1)+C3(n−1)+C4(n−1)+C8(n−1))+(C6∑
j=2

n

(T j−1)+C7∑
j=2

n

(T j−1))+C5∑
j=2

n

(T j)

where the ci's are the cost of each line (noting that c3 = 0
since line 3 is a comment. It can also be omitted). 

Best case:
• The  best  case  for  insertion  sort  is  when  the  input

array is already sorted, in which case the while loop
never  executes  (but  the  condition  must  be  checked
once). 

• Note that in best case minium one amount of comparison
takes place and 0 swaps take place since the array is
already sorted.

• Thus tj = 1 (Comparison) for all j =2,3,... n (i.e. tj-
1 = 0(Swaps)) and the run time reduces to:

T (n)=C1n+(C2(n−1)+C3(n−1)+C4(n−1)+C8(n−1))+(C6∑
j=2

n

(T j−1)+C7∑
j=2

n

(T j−1))+C5∑
j=2

n

(T j)

Substuting T j=1

T (n)=C1n+(C2(n−1)+C4 (n−1)+0+C8(n−1))+(C6∑
j=2

n

0)+C7∑
j=2

n

0+C5∑
j=2

n

(1)

=C1n+C2n+C2+C3n+C3+C8n+C8+C6∗0+C7∗0+C5n
=(C1+C2+C4+C5+C8)n−(C2+C4+C 5+C8)
=an+b

It is in form of linear equation
therefore the time complexity will be O(n) in best case

Note:
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Case 2: Worst Case

The worst case for insertion sort is when the input array
is in reverse (decreasing) sorted order, in which case the
while loop executes the maximum number of times. Thus tj = j
for j =2,3,..., n. Using Appendix A of CLRS, the summation
terms can be reduced as follows:

           

 

Substuting T j=n

T (n)=C1n+C 2(n−1)+C3(n−1)+C8(n−1)+C 6∑
j=2

n

(n−1)+C7∑
j=2

n

(n−1)+C 5∑
j=2

n

(n)

=C1n+C2(n−1)+C3(n−1)+C 8(n−1)+C6
(n(n−1))

2
+C7

(n(n−1))
2

+C5
(n(n+1))

2
Expanding this and grouping like terms we will get this

=(
C 5

2
+
C6

2
+
C 7

2
)n2+(

C5

2
+
C6

2
+
C 7

2
+C1+C 2+C4+C8)n+(C1+C 2+C 4+C%+C 8)

therefore time complexity is O(n2)
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Different time complexity comparison

Asymptotic notation

The complexity of an algorithm describes the efficiency of
the algorithm in terms of the amount of the memory required
to process the data and the processing time.

Complexity of an algorithm is analyzed in two perspectives:
Time and Space.

Time Complexity
It’s a function describing the amount of time required to
run an algorithm in terms of the size of the input. "Time"
can  mean  the  number  of  memory  accesses  performed,  the
number of comparisons between integers, the number of times
some inner loop is executed, or some other natural unit
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related to the amount of real time the algorithm will take.

Space Complexity
It’s  a  function  describing  the  amount  of  memory  an
algorithm  takes  in  terms  of  the  size  of  input  to  the
algorithm. We  often  speak  of  "extra" memory  needed, not
counting  the  memory  needed  to  store  the  input  itself.
Again, we use natural (but fixed-length) units to measure
this.

Space  complexity  is  sometimes  ignored  because  the  space
used  is  minimal  and/or  obvious,  however  sometimes  it
becomes as important an issue as time.

Asymptotic Notations

What is Asymptotic Behavior
The word Asymptotic means approaching a value or curve 
arbitrarily closely (i.e., as some sort of limit is taken).

The only difference being, here we do not have to find the
value of any expression where  n is approaching any finite
number or infinity, but in case of Asymptotic notations, we
use  the  same  model  to  ignore  the  constant  factors  and
insignificant parts of an expression, to device a better
way of representing complexities of algorithms, in a single
coefficient, so that comparison between algorithms can be
done easily.

Execution time of an algorithm depends on the instruction
set,  processor  speed,  disk  I/O  speed,  etc.  Hence,  we
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estimate the efficiency of an algorithm asymptotically.

Time function of an algorithm is represented by T(n), where
n is the input size.

Different types of asymptotic notations are used to 
represent the complexity of an algorithm. Following 
asymptotic notations are used to calculate the running time
complexity of an algorithm.

• O − Big Oh

• Ω − Big omega

• θ − Big theta

O: Asymptotic Upper Bound
‘O’ (Big Oh) is the most commonly used notation. A function
f(n) can  be  represented  is  the  order  of  g(n) that  is
O(g(n)), if there exists a value of positive integer n as n0
and a positive constant c such that −

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) 
≤ c.g(n) for all n > n0. }
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Hence, function g(n) is an upper bound for function f(n), 
as g(n) grows faster than f(n).

Big Omega Notation
Big-Omega (Ω) notation gives a lower bound for a function 
f(n) to within a constant factor.

We write f(n) = Ω(g(n)), If there are positive constantsn0
and c such that, to the right of n0 the f(n) always lies on

or above c*g(n).

Ω(g(n)) = { f(n) : There exist positive constant c and n0 
such that 0 ≤ c g(n) ≤ f(n), for all n ≥ n0}
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Big Theta Notation
Big-Theta(Θ) notation gives bound for a function f(n) to 
within a constant factor.

We write f(n) = Θ(g(n)), If there are positive constants n0
and c1 and c2 such that, to the right of n0 the f(n) always
lies between c1*g(n) and c2*g(n) inclusive.

 Θ(g(n)) = {f(n) : There exist positive constant c1, c2 and
n0 such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n), for all n ≥ n0}

Note: any symbol from the above can be used for any cases.

Analysis Types:
Worst Case Analysis (Usually Done)
In the worst case analysis, we calculate upper bound on the
running time of an algorithm. We must know the case that 
causes the maximum number of operations to be executed. For
Linear Search, the worst case happens when the element to 
be searched (x in the above code) is not present in the 
array. When x is not present, the search() functions 
compares it with all the elements of arr[] one by one. 
Therefore, the worst case time complexity of linear search 
would be Θ(n).

Average Case Analysis (Sometimes done)
In average case analysis, we take all possible inputs and 
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calculate computing time for all of the inputs. Sum all the
calculated values and divide the sum by a total number of 
inputs. We must know (or predict) distribution of cases. 
For the linear search problem, let us assume that all cases
are uniformly distributed(including the case of x not being
present in array). So we sum all the cases and divide the 
sum by (n+1). Following is the value of average case time 
complexity.

Best Case Analysis (Bogus)
In the best case analysis, we calculate lower bound on the 
running time of an algorithm. We must know the case that 
causes minimum number of operations to be executed. In the 
linear search problem, the best case occurs when x is 
present at the first location. The number of operations in 
the best case is constant (not dependent on n). So time 
complexity in the best case would be Θ(1)

Just for knowledge This can be skipped:

Assuming f(n), g(n) and h(n) be asymptotic functions the
mathematical definitions are:

1. If f(n) = Θ(g(n)), then there exists positive constants
c1, c2, n0 such that 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n), for 
all n ≥ n0

2. If f(n) = O(g(n)), then there exists positive constants
c, n0 such that 0 ≤ f(n) ≤ c.g(n), for all n ≥ n0

3. If f(n) = Ω(g(n)), then there exists positive constants
c, n0 such that 0 ≤ c.g(n) ≤ f(n), for all n ≥ n0

4. If f(n) = o(g(n)), then there exists positive constants
c, n0 such that 0 ≤ f(n) < c.g(n), for all n ≥ n0

5. If f(n) = ω(g(n)), then there exists positive constants
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c, n0 such that 0 ≤ c.g(n) < f(n), for all n ≥ n0

Properties:

1. Reflexivity:
If f(n) is given then

f(n) = O(f(n))

Example:
If f(n) = n3 ⇒ O(n3)
Similarly,

f(n) = Ω(f(n)) 
f(n) = Θ(f(n)) 

2. Symmetry:

f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))

Example:
If f(n) = n2 and g(n) = n2 then f(n) = Θ(n2) and g(n) = 
Θ(n2)
Proof:

• Necessary part:
f(n) = Θ(g(n)) ⇒ g(n) = Θ(f(n))
By the definition of Θ, there exists positive 
constants c1, c2, no such that c1.g(n) ≤ f(n) ≤ 
c2.g(n) for all n ≥ no
⇒ g(n) ≤ (1/c1).f(n) and g(n) ≥ (1/c2).f(n)
⇒ (1/c2).f(n) ≤ g(n) ≤ (1/c1).f(n)
Since c1 and c2 are positive constants, 1/c1 and 
1/c2 are well defined. Therefore, by the definition
of Θ, g(n) = Θ(f(n))

• Sufficiency part:
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g(n) = Θ(f(n)) ⇒ f(n) = Θ(g(n))
By the definition of Θ, there exists positive 
constants c1, c2, no such that c1.f(n) ≤ g(n) ≤ 
c2.f(n) for all n ≥ no
⇒ f(n) ≤ (1/c1).g(n) and f(n) ≥ (1/c2).g(n)
⇒ (1/c2).g(n) ≤ f(n) ≤ (1/c1).g(n)
By the definition of Theta(Θ), f(n) = Θ(g(n))

3. Transitivity:

f(n) = O(g(n)) and g(n) = O(h(n)) ⇒ f(n) = O(h(n))

Example:
If f(n) = n, g(n) = n2 and h(n) = n3

⇒ n is O(n2) and n2 is O(n3) then n is O(n3)
Proof:
f(n) = O(g(n)) and g(n) = O(h(n)) ⇒ f(n) = O(h(n))
By the definition of Big-Oh(O), there exists positive 
constants c, no such that f(n) ≤ c.g(n) for all n ≥ no
⇒ f(n) ≤ c1.g(n)
⇒ g(n) ≤ c2.h(n)
⇒ f(n) ≤ c1.c2h(n)
⇒ f(n) ≤ c.h(n), where, c = c1.c2 By the definition, 
f(n) = O(h(n))
Similarly,

f(n) = Θ(g(n)) and g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n))
f(n) = Ω(g(n)) and g(n) = Ω(h(n)) ⇒ f(n) = Ω(h(n))
f(n) = o(g(n)) and g(n) = o(h(n)) ⇒ f(n) = o(h(n))
f(n) = ω(g(n)) and g(n) = ω(h(n)) ⇒ f(n) = ω(h(n))

4. Transpose Symmetry:

f(n) = O(g(n)) if and only if g(n) = Ω(f(n))

Example:
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If f(n) = n and g(n) = n2 then n is O(n2) and n2 is Ω(n)
Proof:

• Necessary part:
f(n) = O(g(n)) ⇒ g(n) = Ω(f(n))
By the definition of Big-Oh (O) ⇒ f(n) ≤ c.g(n) for
some positive constant c ⇒ g(n) ≥ (1/c).f(n)
By the definition of Omega (Ω), g(n) = Ω(f(n))

• Sufficiency part:
g(n) = Ω(f(n)) ⇒ f(n) = O(g(n))
By the definition of Omega (Ω), for some positive 
constant c ⇒ g(n) ≥ c.f(n) ⇒ f(n) ≤ (1/c).g(n)
By the definition of Big-Oh(O), f(n) = O(g(n))

Similarly,

f(n) = o(g(n)) if and only if g(n) = ω(f(n)) 

5.Since these properties hold for asymptotic notations, 
analogies can be drawn between functions f(n) and g(n) 
and two real numbers a and b.

• g(n) = O(f(n)) is similar to a ≤ b
• g(n) = Ω(f(n)) is similar to a ≥ b
• g(n) = Θ(f(n)) is similar to a = b
• g(n) = o(f(n)) is similar to a < b
• g(n) = ω(f(n)) is similar to a > b

6. Observations:

max(f(n), g(n)) = Θ(f(n) + g(n)) 

Proof:
Without loss of generality, assume f(n) ≤ g(n), ⇒ 
max(f(n), g(n)) = g(n)
Consider, g(n) ≤ max(f(n), g(n)) ≤ g(n)
⇒ g(n) ≤ max(f(n), g(n)) ≤ f(n) + g(n)
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⇒ g(n)/2 + g(n)/2 ≤ max(f(n), g(n)) ≤ f(n) + g(n)
From what we assumed, we can write
⇒ f(n)/2 + g(n)/2 ≤ max(f(n), g(n)) ≤ f(n) + g(n)
⇒ (f(n) + g(n))/2 ≤ max(f(n), g(n)) ≤ f(n) + g(n)
By the definition of Θ, max(f(n), g(n)) = Θ(f(n) + 
g(n))

7.O(f(n)) + O(g(n)) = O(max(f(n), g(n)))

Proof:
Without loss of generality, assume f(n) ≤ g(n)
⇒ O(f(n)) + O(g(n)) = c1.f(n) + c2.g(n)
From what we assumed, we can write
O(f(n)) + O(g(n)) ≤ c1.g(n) + c2.g(n)
≤ (c1 + c2) g(n)
≤ c.g(n)
≤ c.max(f(n), g(n))
By the definition of Big-Oh(O),
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))

Refer: https://www.youtube.com/watch?v=bxgTDN9c6rg
Designing of algorithms:

Recursion:
The process in which a function calls itself directly or
indirectly  is  called  recursion  and  the  corresponding
function is called as recursive function. Using recursive
algorithm, certain problems can be solved quite easily.

Advantages of recursion

1. The code may be easier to write.
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2. To solve such problems which are naturally recursive 
such as tower of Hanoi.
3. Reduce unnecessary calling of function.
4. Extremely useful when applying the same solution.
5. Recursion reduce the length of code.
6. It is very useful in solving the data structure problem.
7. Stacks evolutions and infix, prefix, postfix evaluations
etc.
Disadvantages of recursion

1. Recursive functions are generally slower than non-
recursive function.
2. It may require a lot of memory space to hold 
intermediate results on the system stacks.
3. Hard to analyze or understand the code.
4. It is not more efficient in terms of space and time 
complexity.
5. The computer may run out of memory if the recursive 
calls are not properly checked.

Divide and Conquer: 

it is an algorithmic paradigm. A typical Divide and Conquer
algorithm solves a problem using following three steps:

1.Divide the problem into a number of sub-problems that 
are smaller instances of the same problem.

2.Conquer the sub-problems by solving them recursively. 
If the sub-problem sizes are small enough, however, 
just solve the sub-problems in a straightforward 
manner.
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3.Combine the solutions to the sub-problems into the 
solution for the original problem.

Recurrences
Recurrences go hand in hand with the divide-and-conquer

paradigm,  because  they  give  us  a  natural  way  to
characterize  the  running  times  of  divide-and-conquer
algorithms. A recurrence is an equation or inequality that
describes a function in terms

There are three methods for solving recurrences—that is,
for obtaining asymptotic “O” or “θ” bounds on the solution:

• In the substitution method, we guess a bound and then
use mathematical induction to prove our guess correct.

• The recursion-tree method converts the recurrence into
a  tree  whose  nodes  represent  the  costs  incurred  at
various levels of the recursion. We use techniques for
bounding summations to solve the recurrence.

• The master method  provides bounds for recurrences of
the form

 
The  Examples  below  will  explain  how  to  implement  each
method.

Example sums for time complexity for recursive functions:
Time Complexity of a Recursive Function:
Note: T(n) is time function.
Here we will be using re-occurrence relation to solve the
function time complexity
Case :  t(n-1)+1

void fun1 (int n){ 
if(n>0) { 

printf("%d",n);
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fun1(n-1); 
} 

}

Recursion Tree:

NB: 3,2,1 are output on each recursive call.
Consider this function with the recursive call

void fun1 (int n){ -- this executes for t(n) time
if(n>0) { -- this executes 1 time (need not to take)

printf("%d",n);-- takes 1 unit time
fun1(n-1); -- takes t(n-1)

} 
}

summing up all the comments:
t(n) = t(n-1)+2 (or t(n-1) +1 if you are not considering if
)
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therefore the recurrence relation looks like this

Induction Method or Successive Substitution method:

We  can  also  solve  this  using  the  induction  method  also
called as successive substitution method and we can get the
answer. So, let us solve this one. Before solving this, we
should know one thing, if we have any constant value there
then  we  should  write  it  as  one  1.  In  our  example,  the
constant value 2 is there, so replace it with 1 as shown
below.

So, the recurrence is T(n)=T(n-1) + 1 ———-[eq.1]

We can solve this if we know what is T(n-1)
Since, 

T(n)=T(n-1) +1
T(n-1) = T(n-2) +1

So, we can substitute T(n-2) +1 in place of T(n-1). So, the
next equation is
T(n)=T(n-2) + 1 + 1
T(n) =T(n-2) + 2 ———[eq.2]

Let us substitute T(n-3) +1 in that place then this will 
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be,
T(n)=T(n-3) +1+2
T(n) =T(n-3) +3 ———-[eq.3]

So, we have substituted two times how long we should do 
this, let us continue it for K times.
T(n)=T(n-k) +k ———[eq.4]

So, go on substituting until it reduces down to a smaller
value that is n=0. When we don’t know the answer for a
bigger expression, then break the bigger one into a smaller
one and solve it. The same thing we have done and we don’t
know how much this is, but we know when n=0 then the answer
is  directly  1.  We  have  tried  to  reduce  this  and  by
substituting and we got that one.

Now,  we  see  that  this  n-k  actually  has  become  0.  Then
assume that n-k=0. It means n=k. If we substitute that in
[eq.4] it gives,

T(n)=T(n-n) +n
=T(0) +n
=1+n

That solves we got the answer T(n)=1+n. This can be written
as  O(n). Earlier directly from their tracing tree we also
have seen n+1 was the number of calls and the time taken by
this fun1 function depends on the number of calls.

Let us do the exact same thing in forward substitution 
method 

T(n)=T(n-1) +1
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substituting values of n =1 ,2,3 and observing the pattern 
carefully.

T(1)=T(1-1) +1 = T(0)+1 = 1+1

T(2) = T(2-1) + 1 = T(1)+1 = (1+1)+1
T(3) = T(3-1) + 1 = T(2)+1 = (1+1+1)+1
… …  … …
T(k) = k+1
put k =n
therefore time complexity eqn = n+1 = O(n)
Case 2: T(n) = T(n-1) +n

void fun1 (int n){ 
if(n>0) { 
for(int I =0 ; I < n; ++i)

printf("%d",n);
fun1(n-1); 

} 
}

void fun1 (int n){ 
if(n>0) { -- takes 1 time
for(int I =0 ; I < n; ++i)  --- n + 1

printf("%d",n); -- n
fun1(n-1); -- T(n-1) 

} 
}
therefore: T(n) = T(n-1)+2n+2 = T(n-1) +  n

Recursion Tree solution:

Note: n, n-1 …,2,1 is the no of times of execution of for 
loop inside the recursive function.
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Now adding up  amount of time the for loop has run we get

For Substitution method you can refer the playlist of Abdul
Bari (Algorithms) 

T (n)=0+1+2+3 ..n

T (n)=(n(n+1))
2

T (n)=
(n2+n)
2

T (n)=n2

there fore it is O(n2)

Case: T(n)= T(n-1) + log n
void fun1 (int n){ 

if(n>0) { -- takes 1 time
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for(int i =0 ; i < n; i*= 2) 
printf("%d",n); -- log 2 n

fun1(n-1); -- T(n-1) -- T(n-1)
} 

}

Therefore : T(n)= T(n-1) + log n
Here : T(1) = 1 and T(0) = 0 

Solution by substation:
T(n) = T(n - 1) + log n

= T(n - 2) + log (n - 1) + log n

= T(n - 3) + log (n - 2) + log (n - 1) + log n

= T(0) + log 1 + log 2 + ... + log (n - 1) + log n

= T(0) + log n! = Θ(n log n)

note - using  Stirling's approximation, Θ(log n!) =
Θ(n log n). That might help you relate this back to
existing complexity classes. 

We can just consider n log n for our case. It's not equal,
only asymptotically equal.

Case : T(n) = 2T (n/2) + n

void fun1 (int n){ 
if(n>0) { 
for(int I =0 ; I < n; ++i)  

printf("%d",n); -- n

34

http://en.wikipedia.org/wiki/Stirling's_approximation


fun1(n/2); 
fun1(n/2); 

} 
}
The time function will be T(n) = 2 T(n/2) + n

T (n)=2T (n /2)+n (eqn. 1)
let us solve this. We need to find T(n/2) here
T (n /2)=2[T (n /22)]+n /2 (eqn. 2)
put (2) in (1) we get
T (n)=2 [2[T (n/22)]]+n/2+n=22T (n /22)¿+2n
Just try to find T (n /22) in the similar manner after proceeding like this
we can see that it follows the below pattern
2k T (n /2K )+kn
We know that function quits when it isT (1)

therefore assuming that n
(2k )

=1

now let us find out k value
n=2 k
k=log2n
put k=log2n in 2kT (n /2K)+kn and n /2k=1
2(log n)T (1)+( logn)n
from the logarithm rule 9 we can simplify this to
n+(log n)∗n
which is asymptotically equal to n log n
therefore time complexity is O(n log n) 
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Refer the following channel (videos) for some examples:

1) Gate Hub
2) Gate Applied course
3) randerson112358

Master Theorem

T(n) = aT(n/b) + f(n)

where,
n = size of input
a = number of sub-problems in the recursion
n/b = size of each sub-problem. All sub-problems are 
assumed to have the same size.
f(n) = cost of the work done outside the recursive call, 
      which includes the cost of dividing the problem and
      cost of merging the solutions

Here, a ≥ 1 and b > 1 are constants, and f(n) is an 
asymptotically positive function.

n  asymptotically  positive  function  means  that  for  a
sufficiently large value of n, we have f(n) > 0.

If a ≥ 1 and b > 1 are constants and f(n) is an 
asymptotically positive function, then the time complexity 
of a recursive relation is given by

T(n) = aT(n/b) + f(n)

where, T(n) has the following asymptotic bounds:
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1. If f (n)=O(n logba−ϵ) , thenT (n)=Θ(n logba) .
in other words
If f (n)<O(n logba) ,thenT (n)=Θ(n logba) .
2. If f (n)=Θ(nlogba) , thenT (n)=Θ(n logba∗ log n).
3. If f (n)=Ω(n logba+ϵ) , thenT (n)=Θ( f (n)) .
in other words
If f (n)>O(n logba) ,thenT (n)=Θ(n logba) .

ϵ > 0 is a constant.

each of the above conditions can be interpreted as:

• If the cost of solving the sub-problems at each level
increases by a certain factor, the value of f(n) will
become polynomially smaller than nlogb a. Thus, the time
complexity is oppressed by the cost of the last level
ie. nlogb a 

• If the cost of solving the sub-problem at each level is
nearly equal, then the value of  f(n) will be  nlogb a.
Thus, the time complexity will be f(n) times the total
number of levels ie. nlogb a * log n 

• If the cost of solving the sub-problems at each level
decreases by a certain factor, the value of f(n) will
become polynomially larger than nlogb a. Thus, the time
complexity is oppressed by the cost of f(n). 

Solved Example of Master Theorem
T(n) = 3T(n/2) + n2

Here,
a = 3
n/b = n/2

37



f(n) = n2

logb a = log2 3 ≈ 1.58 < 2

ie. f(n) < nlogb a+ϵ , where, ϵ is a constant.

Case 3 implies here.
Thus, T(n) = f(n) = Θ(n2) 

Merge Sort
The merge sort algorithm closely follows the divide-and-
conquer paradigm. Intuitively, it operates as follows:

Divide: Divide the n-element sequence to be sorted into two
subsequences of n=2 elements each.
Conquer: Sort the two subsequences recursively using merge
sort.
Combine: Merge the two sorted subsequences to produce the
sorted answer.

Initialization: 

Prior to the first iteration of the loop,
we have k = p, so that the sub array A [p
…  k-1]  is  empty.  This  empty  sub  array
contains the k – p = 0 smallest elements
of L and R, and since i = j = 1, both L
[i] and R [j] are the Smallest elements of
their  arrays  that  have  not  been  copied
back into A.

Maintenance: To see that each iteration maintains the
loop invariant, let us first suppose that
L[i] <= R[j]. Then L [i] is the smallest
element and copy L [i] into A[k], the sub
array A [p… k] will contain the k – p + 1
smallest  element.  Incrementing  k  and  i
reestablishes the loop invariant for the
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next iteration. If instead L [i] > R[j],
then  perform  the  appropriate  action  to
maintain the loop invariant.

Termination: 

At termination, k = r + 1. By the loop
invariant, the sub array A [p … k- 1],
which is A [p … r], contains the k – P = r
– p + 1 smallest elements of L [1 … n1 +
1] and R [1 … n2 + 1], in sorted order. 

Pseudo code:
Algorithm: 

Merge-Sort (numbers[], p, r) 
if p < r then  

q = ⌊(p + r) / 2⌋ 
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Merge-Sort (numbers[], p, q)
// This will take n/2 cycles to complete
    Merge-Sort (numbers[], q + 1, r)
// This will take n/2 cycles to complete
    Merge (numbers[], p, q, r)

end

Function: Merge (numbers[], p, q, r) 
// This simply runs for n times since if you add the times 
complexities of for loop it is asymptotically equal to n 
n1 = q – p + 1 
n2 = r – q 
declare L[1…n1 + 1] and R[1…n2 + 1] temporary arrays 
for i = 1 to n1 
   L[i] = numbers[p + i - 1] 
for j = 1 to n2 
   R[j] = numbers[q+ j] 
L[n1 + 1] = ∞ 
R[n2 + 1] = ∞ 
i = 1 
j = 1 
for k = p to r 
   if L[i] ≤ R[j] 
      numbers[k] = L[i] 
      i = i + 1 
   else
      numbers[k] = R[j] 
      j = j + 1 
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Analysis of merge sort

We assume that we’re sorting a total of n elements in the 
entire array.

Divide: The divide step just computes the middle of the sub
array, which takes constant time. Thus, D (n) = (1).

Conquer: We recursively solve two sub problems, each of 
size n/2, which contributes 2T (n/2) to the running time.

Combine: We have already noted that the MERGE procedure on 
an n-element sub array takes time (n), so C (n) = (n).

Joining the both time complexities we get 
T(n)  =  2  T(n/2)  +  n  (Solution  can  be  found  in  one  of
examples).

Maximum Sum sub array problem
Note:
refer page 71 in the book named introduction to algorithms
for example refer DAA Class notes please. I will add it
later
Problem:  Given an integer array  nums, find the contiguous
subarray  (containing at  least  one number)  which  has the
largest sum and return its sum.
Algorithm:

1.FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
2.  left-sum = -infinity
3.  sum =0
4.  for i = mid down to low
5.    sum + = A[i]
6.    if sum > left-sum
7.      left-sum = sum
8.      max-left = i
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9.      right-sum = -infinity
10.    sum = 0
11.   for j = mid + 1 to high
12.     sum = sum + A[i]
13.     if sum > right-sum
14.       right-sum = sum
15.       max-right = j
16. return (max-left, max-right, left-sum + right-sum)

FIND-MAXIMUM-SUB ARRAY (A, low, high):
1.if  high == low
2. return(low,high,A[low])
3.else mid = floor((low + high) /2)
4. (left-low,left-high,left-sum)= FIND-MAXIMUM-SUB ARRAY 

(A, low, mid)
5.(left-low,left-high,left-sum)=  FIND-MAXIMUM-SUB  ARRAY

(A, mid+1,high)
6. (cross-low,cross-high,cross-sum)  =FIND-MAXIMUM-SUB

ARRAY (A,low,mid,high)
7.if left-sum >= right-sum and left-sum >= cross-sum
8. return (left-low, left-high,left-sum)
9.else if right-sum >= left-sum and right-sum >= cross-

sum return (right-low, right-high,right-sum
10. else (cross-low,cross-high,cross-sum)

Time complexity is same as merge sort.
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